Rally Plugins

Rally Plugin Reference

Rally has a plugin oriented architecture - in other words Rally team is trying to make all places of code pluggable. Such architecture leds to the big amount of plugins. Rally Plugins Reference page contains a full list with detailed descriptions of all official Rally plugins.

How plugins work

Rally provides an opportunity to create and use a custom benchmark scenario, runner or context as a plugin:

_images/Rally-Plugins.png

Placement

Plugins can be quickly written and used, with no need to contribute them to the actual Rally code. Just place a python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory (or its subdirectories), and it will be autoloaded. Additional paths can be specified with the --plugin-paths argument, or with the RALLY_PLUGIN_PATHS environment variable, both of which accept comma-delimited lists. Both --plugin-paths and RALLY_PLUGIN_PATHS can list either plugin module files, or directories containing plugins. For instance, both of these are valid:

rally --plugin-paths /rally/plugins ...
rally --plugin-paths /rally/plugins/foo.py,/rally/plugins/bar.py ...

You can also use a script unpack_plugins_samples.sh from samples/plugins which will automatically create the ~/.rally/plugins directory.

Example: Benchmark scenario as a plugin

Let’s create as a plugin a simple scenario which list flavors.

Creation

Inherit a class for your plugin from the base Scenario class and implement a scenario method inside it as usual. In our scenario, let us first list flavors as an ordinary user, and then repeat the same using admin clients:

from rally.task import atomic
from rally.task import scenario


class ScenarioPlugin(scenario.Scenario):
    """Sample plugin which lists flavors."""

    @atomic.action_timer("list_flavors")
    def _list_flavors(self):
        """Sample of usage clients - list flavors

        You can use self.context, self.admin_clients and self.clients which are
        initialized on scenario instance creation"""
        self.clients("nova").flavors.list()

    @atomic.action_timer("list_flavors_as_admin")
    def _list_flavors_as_admin(self):
        """The same with admin clients"""
        self.admin_clients("nova").flavors.list()

    @scenario.configure()
    def list_flavors(self):
        """List flavors."""
        self._list_flavors()
        self._list_flavors_as_admin()

Usage

You can refer to your plugin scenario in the benchmark task configuration files just in the same way as to any other scenarios:

{
    "ScenarioPlugin.list_flavors": [
        {
            "runner": {
                "type": "serial",
                "times": 5,
            },
            "context": {
                "create_flavor": {
                    "ram": 512,
                }
            }
        }
    ]
}

This configuration file uses the “create_flavor” context which we’ll create as a plugin below.

Example: Context as a plugin

Let’s create as a plugin a simple context which adds a flavor to the environment before the benchmark task starts and deletes it after it finishes.

Creation

Inherit a class for your plugin from the base Context class. Then, implement the Context API: the setup() method that creates a flavor and the cleanup() method that deletes it.

from rally.task import context
from rally.common import logging
from rally import consts
from rally import osclients

LOG = logging.getLogger(__name__)


@context.configure(name="create_flavor", order=1000)
class CreateFlavorContext(context.Context):
    """This sample create flavor with specified options before task starts and
    delete it after task completion.

    To create your own context plugin, inherit it from
    rally.task.context.Context
    """

    CONFIG_SCHEMA = {
        "type": "object",
        "$schema": consts.JSON_SCHEMA,
        "additionalProperties": False,
        "properties": {
            "flavor_name": {
                "type": "string",
            },
            "ram": {
                "type": "integer",
                "minimum": 1
            },
            "vcpus": {
                "type": "integer",
                "minimum": 1
            },
            "disk": {
                "type": "integer",
                "minimum": 1
            }
        }
    }

    def setup(self):
        """This method is called before the task start"""
        try:
            # use rally.osclients to get necessary client instance
            nova = osclients.Clients(self.context["admin"]["credential"]).nova()
            # and than do what you need with this client
            self.context["flavor"] = nova.flavors.create(
                # context settings are stored in self.config
                name=self.config.get("flavor_name", "rally_test_flavor"),
                ram=self.config.get("ram", 1),
                vcpus=self.config.get("vcpus", 1),
                disk=self.config.get("disk", 1)).to_dict()
            LOG.debug("Flavor with id '%s'" % self.context["flavor"]["id"])
        except Exception as e:
            msg = "Can't create flavor: %s" % e.message
            if logging.is_debug():
                LOG.exception(msg)
            else:
                LOG.warning(msg)

    def cleanup(self):
        """This method is called after the task finish"""
        try:
            nova = osclients.Clients(self.context["admin"]["credential"]).nova()
            nova.flavors.delete(self.context["flavor"]["id"])
            LOG.debug("Flavor '%s' deleted" % self.context["flavor"]["id"])
        except Exception as e:
            msg = "Can't delete flavor: %s" % e.message
            if logging.is_debug():
                LOG.exception(msg)
            else:
                LOG.warning(msg)

Usage

You can refer to your plugin context in the benchmark task configuration files just in the same way as to any other contexts:

{
    "Dummy.dummy": [
        {
            "args": {
                "sleep": 0.01
            },
            "runner": {
                "type": "constant",
                "times": 5,
                "concurrency": 1
            },
            "context": {
                "users": {
                    "tenants": 1,
                    "users_per_tenant": 1
                },
                 "create_flavor": {
                    "ram": 1024
                }
            }
        }
    ]
}

Example: SLA as a plugin

Let’s create as a plugin an SLA (success criterion) which checks whether the range of the observed performance measurements does not exceed the allowed maximum value.

Creation

Inherit a class for your plugin from the base SLA class and implement its API (the add_iteration(iteration), the details() method):

from rally.task import sla
from rally.common.i18n import _

@sla.configure(name="max_duration_range")
class MaxDurationRange(sla.SLA):
    """Maximum allowed duration range in seconds."""

    CONFIG_SCHEMA = {
        "type": "number",
        "minimum": 0.0,
    }

    def __init__(self, criterion_value):
        super(MaxDurationRange, self).__init__(criterion_value)
        self._min = 0
        self._max = 0

    def add_iteration(self, iteration):
      # Skipping failed iterations (that raised exceptions)
        if iteration.get("error"):
            return self.success   # This field is defined in base class

        # Updating _min and _max values
        self._max = max(self._max, iteration["duration"])
        self._min = min(self._min, iteration["duration"])

        # Updating successfulness based on new max and min values
        self.success = self._max - self._min <= self.criterion_value
        return self.success

    def details(self):
        return (_("%s - Maximum allowed duration range: %.2f%% <= %.2f%%") %
                (self.status(), self._max - self._min, self.criterion_value))

Usage

You can refer to your SLA in the benchmark task configuration files just in the same way as to any other SLA:

{
    "Dummy.dummy": [
        {
            "args": {
                "sleep": 0.01
            },
            "runner": {
                "type": "constant",
                "times": 5,
                "concurrency": 1
            },
            "context": {
                "users": {
                    "tenants": 1,
                    "users_per_tenant": 1
                }
            },
            "sla": {
                "max_duration_range": 2.5
            }
        }
    ]
}

Example: Scenario runner as a plugin

Let’s create as a plugin a scenario runner which runs a given benchmark scenario for a random number of times (chosen at random from a given range).

Creation

Inherit a class for your plugin from the base ScenarioRunner class and implement its API (the _run_scenario() method):

import random

from rally.task import runner
from rally import consts


@runner.configure(name="random_times")
class RandomTimesScenarioRunner(runner.ScenarioRunner):
    """Sample of scenario runner plugin.

    Run scenario random number of times, which is chosen between min_times and
    max_times.
    """

    CONFIG_SCHEMA = {
        "type": "object",
        "$schema": consts.JSON_SCHEMA,
        "properties": {
            "type": {
                "type": "string"
            },
            "min_times": {
                "type": "integer",
                "minimum": 1
            },
            "max_times": {
                "type": "integer",
                "minimum": 1
            }
        },
        "additionalProperties": True
    }

    def _run_scenario(self, cls, method_name, context, args):
        # runners settings are stored in self.config
        min_times = self.config.get('min_times', 1)
        max_times = self.config.get('max_times', 1)

        for i in range(random.randrange(min_times, max_times)):
            run_args = (i, cls, method_name,
                        runner._get_scenario_context(context), args)
            result = runner._run_scenario_once(run_args)
            # use self.send_result for result of each iteration
            self._send_result(result)

Usage

You can refer to your scenario runner in the benchmark task configuration files just in the same way as to any other runners. Don’t forget to put you runner-specific parameters to the configuration as well (“min_times” and “max_times” in our example):

{
    "Dummy.dummy": [
        {
            "runner": {
                "type": "random_times",
                "min_times": 10,
                "max_times": 20,
            },
            "context": {
                "users": {
                    "tenants": 1,
                    "users_per_tenant": 1
                }
            }
        }
    ]
}

Different plugin samples are available here.