
Rally Documentation
Release 0.0.1

OpenStack Foundation

March 11, 2015

Contents

1 Contents 3
1.1 Overview . 3
1.2 Installation . 9
1.3 Rally step-by-step . 11
1.4 User stories . 26
1.5 Rally Plugins . 30
1.6 Contribute to Rally . 37
1.7 Rally OS Gates . 40
1.8 Request New Features . 42
1.9 Project Info . 46

i

ii

Rally Documentation, Release 0.0.1

OpenStack is, undoubtedly, a really huge ecosystem of cooperative services. Rally is a benchmarking tool that
answers the question: “How does OpenStack work at scale?”. To make this possible, Rally automates and unifies
multi-node OpenStack deployment, cloud verification, benchmarking & profiling. Rally does it in a generic way,
making it possible to check whether OpenStack is going to work well on, say, a 1k-servers installation under high
load. Thus it can be used as a basic tool for an OpenStack CI/CD system that would continuously improve its SLA,
performance and stability.

Contents 1

Rally Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Contents

1.1 Overview

Rally is a benchmarking tool that automates and unifies multi-node OpenStack deployment, cloud verification,
benchmarking & profiling. It can be used as a basic tool for an OpenStack CI/CD system that would continuously
improve its SLA, performance and stability.

1.1.1 Use Cases

Let’s take a look at 3 major high level Use Cases of Rally:

3

Rally Documentation, Release 0.0.1

Generally, there are a few typical cases where Rally proves to be of great use:

1. Automate measuring & profiling focused on how new code changes affect the OS performance;

2. Using Rally profiler to detect scaling & performance issues;

3. Investigate how different deployments affect the OS performance:

• Find the set of suitable OpenStack deployment architectures;

• Create deployment specifications for different loads (amount of controllers, swift nodes, etc.);

4. Automate the search for hardware best suited for particular OpenStack cloud;

5. Automate the production cloud specification generation:

• Determine terminal loads for basic cloud operations: VM start & stop, Block Device create/destroy &
various OpenStack API methods;

4 Chapter 1. Contents

Rally Documentation, Release 0.0.1

• Check performance of basic cloud operations in case of different loads.

1.1.2 Real-life examples

To be substantive, let’s investigate a couple of real-life examples of Rally in action.

How does amqp_rpc_single_reply_queue affect performance?

Rally allowed us to reveal a quite an interesting fact about Nova. We used NovaServers.boot_and_delete benchmark
scenario to see how the amqp_rpc_single_reply_queue option affects VM bootup time (it turns on a kind of fast RPC).
Some time ago it was shown that cloud performance can be boosted by setting it on, so we naturally decided to check
this result with Rally. To make this test, we issued requests for booting and deleting VMs for a number of concurrent
users ranging from 1 to 30 with and without the investigated option. For each group of users, a total number of 200
requests was issued. Averaged time per request is shown below:

So Rally has unexpectedly indicated that setting the *amqp_rpc_single_reply_queue* option apparently affects
the cloud performance, but in quite an opposite way rather than it was thought before.

Performance of Nova list command

Another interesting result comes from the NovaServers.boot_and_list_server scenario, which enabled us to we
launched the following benchmark with Rally:

• Benchmark environment (which we also call “Context”): 1 temporary OpenStack user.

1.1. Overview 5

https://docs.google.com/file/d/0B-droFdkDaVhVzhsN3RKRlFLODQ/edit?pli=1

Rally Documentation, Release 0.0.1

• Benchmark scenario: boot a single VM from this user & list all VMs.

• Benchmark runner setting: repeat this procedure 200 times in a continuous way.

During the execution of this benchmark scenario, the user has more and more VMs on each iteration. Rally has shown
that in this case, the performance of the VM list command in Nova is degrading much faster than one might expect:

Complex scenarios

In fact, the vast majority of Rally scenarios is expressed as a sequence of “atomic” actions. For example, No-
vaServers.snapshot is composed of 6 atomic actions:

1. boot VM

2. snapshot VM

3. delete VM

4. boot VM from snapshot

5. delete VM

6. delete snapshot

Rally measures not only the performance of the benchmark scenario as a whole, but also that of single atomic actions.
As a result, Rally also plots the atomic actions performance data for each benchmark iteration in a quite detailed way:

6 Chapter 1. Contents

Rally Documentation, Release 0.0.1

1.1.3 Architecture

Usually OpenStack projects are implemented “as-a-Service”, so Rally provides this approach. In addition, it imple-
ments a CLI-driven approach that does not require a daemon:

1. Rally as-a-Service: Run rally as a set of daemons that present Web UI (work in progress) so 1 RaaS could be
used by a whole team.

2. Rally as-an-App: Rally as a just lightweight and portable CLI app (without any daemons) that makes it simple
to use & develop.

The diagram below shows how this is possible:

1.1. Overview 7

Rally Documentation, Release 0.0.1

The actual Rally core consists of 4 main components, listed below in the order they go into action:

1. Server Providers - provide a unified interface for interaction with different virtualization technologies (LXS,
Virsh etc.) and cloud suppliers (like Amazon): it does so via ssh access and in one L3 network;

2. Deploy Engines - deploy some OpenStack distribution (like DevStack or FUEL) before any benchmarking
procedures take place, using servers retrieved from Server Providers;

3. Verification - runs Tempest (or another specific set of tests) against the deployed cloud to check that it works
correctly, collects results & presents them in human readable form;

4. Benchmark Engine - allows to write parameterized benchmark scenarios & run them against the cloud.

It should become fairly obvious why Rally core needs to be split to these parts if you take a look at the following
diagram that visualizes a rough algorithm for starting benchmarking OpenStack at scale. Keep in mind that there
might be lots of different ways to set up virtual servers, as well as to deploy OpenStack to them.

8 Chapter 1. Contents

Rally Documentation, Release 0.0.1

1.2 Installation

1.2.1 Automated installation

git clone https://git.openstack.org/stackforge/rally
./rally/install_rally.sh

Notes: The installation script should be run as root or as a normal user using sudo. Rally requires either the Python
2.6 or the Python 2.7 version.

Alternatively, you can install Rally in a virtual environment:

1.2. Installation 9

Rally Documentation, Release 0.0.1

git clone https://git.openstack.org/stackforge/rally
./rally/install_rally.sh -v

1.2.2 Rally with DevStack all-in-one installation

It is also possible to install Rally with DevStack. First, clone the corresponding repositories:

git clone https://git.openstack.org/openstack-dev/devstack
git clone https://github.com/stackforge/rally

Then, configure DevStack to run Rally:

cp rally/contrib/devstack/lib/rally devstack/lib/
cp rally/contrib/devstack/extras.d/70-rally.sh devstack/extras.d/
cd devstack
echo "enable_service rally" >> localrc

Finally, run DevStack as usually:

./stack.sh

1.2.3 Rally & Docker

There is an image on dokerhub with rally installed. To pull this image, just execute:

docker pull rallyforge/rally

Or you may want to build rally image from source:

first cd to rally source root dir
docker build -t myrally .

Since rally stores local settings in user’s home dir and the database in /var/lib/rally/database, you may want to keep
this directories outside of container. This may be done by the following steps:

cd ~ #go to your home directory
mkdir rally_home rally_db
docker run -t -i -v ~/rally_home:/home/rally -v ~/rally_db:/var/lib/rally/database rallyforge/rally

You may want to save last command as an alias:

echo ’alias dock_rally="docker run -t -i -v ~/rally_home:/home/rally -v ~/rally_db:/var/lib/rally/database rallyforge/rally"’ >> ~.bashrc

After executing dock_rally alias, or docker run you got bash running inside container with rally installed. You
may do anytnig with rally, but you need to create db first:

user@box:~/rally$ dock_rally
rally@1cc98e0b5941:~$ rally-manage db recreate
rally@1cc98e0b5941:~$ rally deployment list
There are no deployments. To create a new deployment, use:
rally deployment create
rally@1cc98e0b5941:~$

More about docker: https://www.docker.com/

10 Chapter 1. Contents

https://www.docker.com/

Rally Documentation, Release 0.0.1

1.3 Rally step-by-step

In the following tutorial, we will guide you step-by-step through different use cases that might occur in Rally, starting
with the easy ones and moving towards more complicated cases.

1.3.1 Step 0. Installation

Installing Rally is very simple. Just execute the following commands:

git clone https://git.openstack.org/stackforge/rally
./rally/install_rally.sh

Notes: The installation script should be run as root or as a normal user using sudo. Rally requires either the Python
2.6 or the Python 2.7 version.

There are also other installation options that you can find here.

Now that you have rally installed, you are ready to start benchmarking OpenStack with it!

1.3.2 Step 1. Setting up the environment and running a benchmark from samples

In this demo, we will show how to perform the following basic operations in Rally:

We assume that you have a Rally installation and an already existing OpenStack deployment with Keystone available
at <KEYSTONE_AUTH_URL>.

1. Registering an OpenStack deployment in Rally

First, you have to provide Rally with an Openstack deployment it is going to benchmark. This should be done either
through OpenRC files or through deployment configuration files. In case you already have an OpenRC, it is extremely
simple to register a deployment with the deployment create command:

$. opernc admin admin
$ rally deployment create --fromenv --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | devstack_2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

Alternatively, you can put the information about your cloud credentials into a JSON configuration file (let’s call it
existing.json). The deployment create command has a slightly different syntax in this case:

$ rally deployment create --file=existing.json --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | devstack_2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

1.3. Rally step-by-step 11

http://docs.openstack.org/user-guide/content/cli_openrc.html
https://github.com/stackforge/rally/tree/master/samples/deployments
https://github.com/stackforge/rally/blob/master/samples/deployments/existing.json

Rally Documentation, Release 0.0.1

Note the last line in the output. It says that the just created deployment is now used by Rally; that means that all the
benchmarking operations from now on are going to be performed on this deployment. Later we will show how to
switch between different deployments.

Finally, the deployment check command enables you to verify that your current deployment is healthy and ready to be
benchmarked:

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

2. Benchmarking

Now that we have a working and registered deployment, we can start benchmarking it. The sequence of benchmarks
to be launched by Rally should be specified in a benchmark task configuration file (either in JSON or in YAML format).
Let’s try one of the sample benchmark tasks available in samples/tasks/scenarios, say, the one that boots and deletes
multiple servers (samples/tasks/scenarios/nova/boot-and-delete.json):

{
"NovaServers.boot_and_delete_server": [

{
"args": {

"flavor": {
"name": "m1.nano"

},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {

"type": "constant",
"times": 10,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
}

}
]

}

12 Chapter 1. Contents

https://github.com/stackforge/rally/tree/master/samples/tasks/scenarios

Rally Documentation, Release 0.0.1

To start a benchmark task, run the task start command (you can also add the -v option to print more logging informa-
tion):

$ rally task start samples/tasks/scenarios/nova/boot-and-delete.json
--
Preparing input task

--

Input task is:
<Your task config here>

--
Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: started

--

Benchmarking... This can take a while...

To track task status use:

rally task status
or
rally task detailed

--
Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: finished

--

test scenario NovaServers.boot_and_delete_server
args position 0
args values:
{u’args’: {u’flavor’: {u’name’: u’m1.nano’},

u’force_delete’: False,
u’image’: {u’name’: u’^cirros.*uec$’}},

u’context’: {u’users’: {u’project_domain’: u’default’,
u’resource_management_workers’: 30,
u’tenants’: 3,
u’user_domain’: u’default’,
u’users_per_tenant’: 2}},

u’runner’: {u’concurrency’: 2, u’times’: 10, u’type’: u’constant’}}
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.99	9.047	11.862	9.747	10.805	100.0%	10
nova.delete_server	4.427	4.574	4.772	4.677	4.725	100.0%	10
total	12.556	13.621	16.37	14.252	15.311	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 70.1310448647
Full duration: 87.545541048

HINTS:

* To plot HTML graphics with this data, run:
rally task plot2html 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996 --out output.html

* To get raw JSON output of task results, run:
rally task results 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Using task: 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

1.3. Rally step-by-step 13

Rally Documentation, Release 0.0.1

Note that the Rally input task above uses regular expressions to specify the image and flavor name to be used for
server creation, since concrete names might differ from installation to installation. If this benchmark task fails, then
the reason for that might a non-existing image/flavor specified in the task. To check what images/flavors are available
in the deployment you are currently benchmarking, you might use the rally show command:

$ rally show images
+--------------------------------------+-----------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+-----------------------+-----------+
| 8dfd6098-0c26-4cb5-8e77-1ecb2db0b8ae | CentOS 6.5 (x86_64) | 344457216 |
| 2b8d119e-9461-48fc-885b-1477abe2edc5 | CirrOS 0.3.1 (x86_64) | 13147648 |
+--------------------------------------+-----------------------+-----------+

$ rally show flavors
+---------------------+-----------+-------+----------+-----------+-----------+
| ID | Name | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
+---------------------+-----------+-------+----------+-----------+-----------+
1	m1.tiny	1	512		1
2	m1.small	1	2048		20
3	m1.medium	2	4096		40
4	m1.large	4	8192		80
5	m1.xlarge	8	16384		160
+---------------------+-----------+-------+----------+-----------+-----------+

3. Report generation

One of the most beautiful things in Rally is its task report generation mechanism. It enables you to create illustrative
and comprehensive HTML reports based on the benchmarking data. To create and open at once such a report for the
last task you have launched, call:

$ rally task report --out=report1.html --open

This will produce an HTML page with the overview of all the scenarios that you’ve included into the last benchmark
task completed in Rally (in our case, this is just one scenario, and we will cover the topic of multiple scenarios in one
task in the next step of our tutorial):

This aggregating table shows the duration of the load produced by the corresponding scenario (“Load duration”), the
overall benchmark scenario execution time, including the duration of environment preparation with contexts (“Full
duration”), the number of iterations of each scenario (“Iterations”), the type of the load used while running the
scenario (“Runner”), the number of failed iterations (“Errors”) and finally whether the scenario has passed certain
Success Criteria (“SLA”) that were set up by the user in the input configuration file (we will cover these criteria in one
of the next steps).

By navigating in the left panel, you can switch to the detailed view of the benchmark results for the only scenario we
included into our task, namely NovaServers.boot_and_delete_server:

14 Chapter 1. Contents

Rally Documentation, Release 0.0.1

This page, along with the description of the success criteria used to check the outcome of this scenario, shows some
more detailed information and statistics about the duration of its iterations. Now, the “Total durations” table splits
the duration of our scenario into the so-called “atomic actions”: in our case, the “boot_and_delete_server” scenario
consists of two actions - “boot_server” and “delete_server”. You can also see how the scenario duration changed
throughout is iterations in the “Charts for the total duration” section. Similar charts, but with atomic actions detaliza-
tion, will arise if you switch to the “Details” tab of this page:

Note that all the charts on the report pages are very dynamic: you can change their contents by clicking the switches
above the graph and see more information about its single points by hovering the cursor over these points.

1.3. Rally step-by-step 15

Rally Documentation, Release 0.0.1

Take some time to play around with these graphs and then move on to the next step of our tutorial.

1.3.3 Step 2. Running multiple benchmarks in a single task

1. Rally input task syntax

Rally comes with a really great collection of benchmark scenarios and in most real-world scenarios you will use
multiple scenarios to test your OpenStack cloud. Rally makes it very easy to run different benchmarks defined in a
single benchmark task. To do so, use the following syntax:

{
"<ScenarioName1>": [<benchmark_config>, <benchmark_config2>, ...]
"<ScnearioName2>": [<benchmark_config>, ...]

}

where <benchmark_config>, as before, is a dictionary:

{
"args": { scenario-specific arguments },
"runner": {"type": ..., }
...

}

2. Multiple benchmarks in a single task

As an example, let’s edit our configuration file from step 1 so that it prescribes Rally to launch not only the No-
vaServers.boot_and_delete_server scenario, but also the KeystoneBasic.create_delete_user scenario. All we have
to do is to append the configuration of the second scenario as yet another top-level key of our json file:

multiple-scenarios.json

{
"NovaServers.boot_and_delete_server": [

{
"args": {

"flavor": {
"name": "m1.nano"

},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {

"type": "constant",
"times": 10,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
}

}
],

16 Chapter 1. Contents

Rally Documentation, Release 0.0.1

"KeystoneBasic.create_delete_user": [
{

"args": {
"name_length": 10

},
"runner": {

"type": "constant",
"times": 10,
"concurrency": 3

}
}

]
}

Now you can start this benchmark task as usually:

$ rally task start multiple-scenarios.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.06	11.354	18.594	18.54	18.567	100.0%	10
nova.delete_server	4.364	5.054	6.837	6.805	6.821	100.0%	10
total	12.572	16.408	25.396	25.374	25.385	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 84.1959171295
Full duration: 102.033041
--

...

+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
keystone.create_user	0.676	0.875	1.03	1.02	1.025	100.0%	10
keystone.delete_user	0.407	0.647	0.84	0.739	0.79	100.0%	10
total	1.082	1.522	1.757	1.724	1.741	100.0%	10
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 5.72119688988
Full duration: 10.0808410645

...

Note that the HTML reports you can generate by typing rally task report –out=report_name.html after your bench-
mark task has completed will get richer as your benchmark task configuration file includes more benchmark scenarios.
Let’s take a look at the report overview page for a task that covers all the scenarios available in Rally:

$ rally task report --out=report_multiple_scenarios.html --open

1.3. Rally step-by-step 17

Rally Documentation, Release 0.0.1

3. Multiple configurations of the same scenario

Yet another thing you can do in Rally is to launch the same benchmark scenario multiple times with different
configurations. That’s why our configuration file stores a list for the key “NovaServers.boot_and_delete_server”:
you can just append a different configuration of this benchmark scenario to this list to get it. Let’s say, you want to run
the boot_and_delete_server scenario twice: first using the “m1.nano” flavor and then using the “m1.tiny” flavor:

multiple-configurations.json

{
"NovaServers.boot_and_delete_server": [

{
"args": {

"flavor": {
"name": "m1.nano"

},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {...},
"context": {...}

},
{

"args": {
"flavor": {

"name": "m1.tiny"
},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {...},
"context": {...}

}
]

}

That’s it! You will get again the results for each configuration separately:

$ rally task start --task=multiple-configurations.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+

18 Chapter 1. Contents

Rally Documentation, Release 0.0.1

| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.896	9.433	13.14	11.329	12.234	100.0%	10
nova.delete_server	4.435	4.898	6.975	5.144	6.059	100.0%	10
total	12.404	14.331	17.979	16.72	17.349	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 73.2339417934
Full duration: 91.1692159176
--

...

+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.207	8.91	9.823	9.692	9.758	100.0%	10
nova.delete_server	4.405	4.767	6.477	4.904	5.691	100.0%	10
total	12.735	13.677	16.301	14.596	15.449	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 71.029528141
Full duration: 88.0259010792
...

The HTML report will also look similar to what we have seen before:

$ rally task report --out=report_multiple_configuraions.html --open

1.3.4 Step 3. Adding success criteria (SLA) for benchmarks

1. SLA - Service-Level Agreement (Success Criteria)

Rally allows you to set success criteria (also called SLA - Service-Level Agreement) for every benchmark. Rally will
automatically check them for you.

To configure the SLA, add the “sla” section to the configuration of the corresponding benchmark (the check name is
a key associated with its target value). You can combine different success criteria:

{
"NovaServers.boot_and_delete_server": [

{
"args": {

...
},
"runner": {

...

1.3. Rally step-by-step 19

Rally Documentation, Release 0.0.1

},
"context": {

...
},
"sla": {

"max_seconds_per_iteration": 10,
"max_failure_percent": 25

}
}

]
}

Such configuration will mark the NovaServers.boot_and_delete_server benchmark scenario as not successful if
either some iteration took more than 10 seconds or more than 25% iterations failed.

2. Checking SLA

Let us show you how Rally SLA work using a simple example based on Dummy benchmark scenarios. These
scenarios actually do not perform any OpenStack-related stuff but are very useful for testing the behavious of Rally.
Let us put in a new task, test-sla.json, 2 scenarios – one that does nothing and another that just throws an exception:

{
"Dummy.dummy": [

{
"args": {},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
},
"sla": {

"failure_rate": {"max": 0.0}
}

}
],
"Dummy.dummy_exception": [

{
"args": {},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
},
"sla": {

"failure_rate": {"max": 0.0}

20 Chapter 1. Contents

Rally Documentation, Release 0.0.1

}
}

]
}

Note that both scenarios in these tasks have the maximum failure rate of 0% as their success criterion. We expect
that the first scenario will pass this criterion while the second will fail it. Let’s start the task:

$ rally task start test-sla.json
...

After the task completes, run rally task sla_check to check the results again the success criteria you defined in the task:

$ rally task sla_check
+-----------------------+-----+--------------+--------+---+
| benchmark | pos | criterion | status | detail |
+-----------------------+-----+--------------+--------+---+
| Dummy.dummy | 0 | failure_rate | PASS | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 0.0% |
| Dummy.dummy_exception | 0 | failure_rate | FAIL | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 100.0% |
+-----------------------+-----+--------------+--------+---+

Exactly as expected.

3. SLA in task report

SLA checks are nicely visualized in task reports. Generate one:

$ rally task report --out=report_sla.html --open

Benchmark scenarios that have passed SLA have a green check on the overview page:

Somewhat more detailed information about SLA is displayed on the scenario pages:

1.3. Rally step-by-step 21

Rally Documentation, Release 0.0.1

1.3.5 Step 4. Working with multiple OpenStack clouds

1. Multiple OpenStack clouds in Rally

Rally is an awesome tool that allows you to work with multiple clouds and can itself deploy them. We already know
how to work with a single cloud. Let us now register 2 clouds in Rally: the one that we have access to and the other
that we know is registered with wrong credentials.

$. opernc admin admin # openrc with correct credentials
$ rally deployment create --fromenv --name=cloud-1
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-18 00:11:14.757203 | cloud-1 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 4251b491-73b2-422a-aecb-695a94165b5e
~/.rally/openrc was updated
...

$. bad_opernc admin admin # openrc with wrong credentials
$ rally deployment create --fromenv --name=cloud-2
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-18 00:38:26.127171 | cloud-2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

Let us now list the deployments we have created:

$ rally deployment list
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-05 00:11:14.757203 | cloud-1 | deploy->finished | |
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-05 00:40:58.451435 | cloud-2 | deploy->finished | * |
+--------------------------------------+----------------------------+------------+------------------+--------+

22 Chapter 1. Contents

Rally Documentation, Release 0.0.1

Note that the second is marked as “active” because this is the deployment we have created most recently. This means
that it will be automatically (unless its UUID or name is passed explicitly via the –deployment parameter) used by the
commands that need a deployment, like rally task start ... or rally deployment check:

$ rally deployment check
Authentication Issues: wrong keystone credentials specified in your endpoint properties. (HTTP 401).

$ rally deployment check --deployment=cloud-1
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

You can also switch the active deployment using the rally use deployment command:

$ rally use deployment cloud-1
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Note the first two lines of the CLI output for the rally use deployment command. They tell you the UUID of the new
active deployment and also say that the ~/.rally/openrc file was updated – this is the place where the “active” UUID is
actually stored by Rally.

One last detail about managing different deployments in Rally is that the rally task list command outputs only those
tasks that were run against the currently active deployment, and you have to provide the –all-deployments parameter
to list all the tasks:

$ rally task list
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+

1.3. Rally step-by-step 23

Rally Documentation, Release 0.0.1

| c21a6ecb-57b2-43d6-bbbb-d7a827f1b420 | cloud-1 | 2015-01-05 01:00:42.099596 | 0:00:13.419226 | finished | False | |
| f6dad6ab-1a6d-450d-8981-f77062c6ef4f | cloud-1 | 2015-01-05 01:05:57.653253 | 0:00:14.160493 | finished | False | |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
$ rally task list --all-deployment
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
c21a6ecb-57b2-43d6-bbbb-d7a827f1b420	cloud-1	2015-01-05 01:00:42.099596	0:00:13.419226	finished	False	
f6dad6ab-1a6d-450d-8981-f77062c6ef4f	cloud-1	2015-01-05 01:05:57.653253	0:00:14.160493	finished	False	
6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996	cloud-2	2015-01-05 01:14:51.428958	0:00:15.042265	finished	False	
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+

2. Rally as a deployment engine

Along with supporting already existing OpenStack deployments, Rally itself can deploy OpenStack automatically
by using one of its deployment engines. Take a look at other deployment configuration file samples. For example,
devstack-in-existing-servers.json is a deployment configuration file that tells Rally to deploy OpenStack with Devstack
on the server with given credentials:

{
"type": "DevstackEngine",
"provider": {

"type": "ExistingServers",
"credentials": [{"user": "root", "host": "10.2.0.8"}]

}
}

You can try this out, say, with a virtual machine. Edit the configuration file with your IP address/user name and run,
as usual:

$ rally deployment create --file=samples/deployments/devstack-in-existing-servers.json.json --name=new-devstack
+---------------------------+----------------------------+----------+----------------------+
| uuid | created_at | name | status |
+---------------------------+----------------------------+----------+----------------------+
| <Deployment UUID> | 2015-01-10 22:00:28.270941 | new-devstack | deploy->finished |
+---------------------------+----------------------------+--------------+------------------+
Using deployment : <Deployment UUID>

1.3.6 Step 5. Discovering more benchmark scenarios in Rally

1. Scenarios in the Rally repository

Rally currently comes with a great collection of benchmark scenarios that use the API of different OpenStack projects
like Keystone, Nova, Cinder, Glance and so on. The good news is that you can combine multiple benchmark
scenarios in one task to benchmark your cloud in a comprehensive way.

First, let’s see what scenarios are available in Rally. One of the ways to discover these scenario is just to inspect their
source code.

2. Rally built-in search engine

A much more convenient way to learn about different benchmark scenarios in Rally, however, is to use a special search
engine embedded into its Command-Line Interface, which, for a given search query, prints documentation for the
corresponding benchmark scenario (and also supports other Rally entities like SLA).

24 Chapter 1. Contents

https://github.com/stackforge/rally/tree/master/samples/deployments
https://github.com/stackforge/rally/tree/master/rally/benchmark/scenarios

Rally Documentation, Release 0.0.1

To search for some specific benchmark scenario by its name or by its group, use the rally info find <query> command:

$ rally info find create_meter_and_get_stats
--
CeilometerStats.create_meter_and_get_stats (benchmark scenario)

--

Create a meter and fetch its statistics.

Meter is first created and then statistics is fetched for the same
using GET /v2/meters/(meter_name)/statistics.

Parameters:
- kwargs: contains optional arguments to create a meter

$ rally info find some_non_existing_benchmark
Failed to find any docs for query: ’some_non_existing_benchmark’

You can also get the list of different benchmark scenario groups available in Rally by typing rally info find Bench-
markScenarios command:

$ rally info find BenchmarkScenarios
--
Rally - Benchmark scenarios

--

Benchmark scenarios are what Rally actually uses to test the performance of an OpenStack deployment.
Each Benchmark scenario implements a sequence of atomic operations (server calls) to simulate
interesing user/operator/client activity in some typical use case, usually that of a specific OpenStack
project. Iterative execution of this sequence produces some kind of load on the target cloud.
Benchmark scenarios play the role of building blocks in benchmark task configuration files.

Scenarios in Rally are put together in groups. Each scenario group is concentrated on some specific
OpenStack functionality. For example, the "NovaServers" scenario group contains scenarios that employ
several basic operations available in Nova.

List of Benchmark scenario groups:
--
Name Description

--
Authenticate Benchmark scenarios for the authentication mechanism.
CeilometerAlarms Benchmark scenarios for Ceilometer Alarms API.
CeilometerMeters Benchmark scenarios for Ceilometer Meters API.
CeilometerQueries Benchmark scenarios for Ceilometer Queries API.
CeilometerResource Benchmark scenarios for Ceilometer Resource API.
CeilometerStats Benchmark scenarios for Ceilometer Stats API.
CinderVolumes Benchmark scenarios for Cinder Volumes.
DesignateBasic Basic benchmark scenarios for Designate.
Dummy Dummy benchmarks for testing Rally benchmark engine at scale.
GlanceImages Benchmark scenarios for Glance images.
HeatStacks Benchmark scenarios for Heat stacks.
KeystoneBasic Basic benchmark scenarios for Keystone.
NeutronNetworks Benchmark scenarios for Neutron.
NovaSecGroup Benchmark scenarios for Nova security groups.
NovaServers Benchmark scenarios for Nova servers.
Quotas Benchmark scenarios for quotas.
Requests Benchmark scenarios for HTTP requests.
SaharaClusters Benchmark scenarios for Sahara clusters.
SaharaJob Benchmark scenarios for Sahara jobs.

1.3. Rally step-by-step 25

Rally Documentation, Release 0.0.1

SaharaNodeGroupTemplates Benchmark scenarios for Sahara node group templates.
TempestScenario Benchmark scenarios that launch Tempest tests.
VMTasks Benchmark scenarios that are to be run inside VM instances.
ZaqarBasic Benchmark scenarios for Zaqar.

--

To get information about benchmark scenarios inside each scenario group, run:
$ rally info find <ScenarioGroupName>

1.4 User stories

Many users of Rally were able to make interesting discoveries concerning their OpenStack clouds using our bench-
marking tool. Numerous user stories presented below show how Rally has made it possible to find performance bugs
and validate improvements for different OpenStack installations.

1.4.1 4x performance increase in Keysone inside Apache using the token creation
benchmark

(Contributed by Neependra Khare, Red Hat)

Below we describe how we were able to get and verify a 4x better performance of Keysone inside Apache. To do that,
we ran a Keystone token creation benchmark with Rally under different load (this benchmark scenario essentially just
authenticates users with keystone to get tokens).

Goal

• Get the data about performance of token creation under different load.

• Ensure that keystone with increased public_workers/admin_workers values and under Apache works better than
the default setup.

Summary

• As the concurrency increases, time to authenticate the user gets up.

• Keystone is CPU bound process and by default only one thread of keystone-all process get started. We can in-
crease the parallelism by :- 1. increasing public_workers/admin_workers values in keystone.conf file 2. running
keystone inside Apache

• We configured Keystone with 4 public_workers and ran Keystone inside Apache. In both cases we got upto 4x
better performance as compared to default keystone configuration.

Setup

Server : Dell PowerEdge R610

CPU make and model : Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

CPU count: 24

RAM : 48 GB

Devstack - Commit#d65f7a2858fb047b20470e8fa62ddaede2787a85

26 Chapter 1. Contents

Rally Documentation, Release 0.0.1

Keystone - Commit#455d50e8ae360c2a7598a61d87d9d341e5d9d3ed

Keystone API - 2

To increase public_workers - Uncomment line with public_workers and set public_workers to 4. Then restart keystone
service.

To run keystone inside Apache - Added APACHE_ENABLED_SERVICES=key in localrc file while setting up Open-
Stack environment with devstack.

Results

1. Concurrency = 4

{’context’: {’users’: {’concurrent’: 30,
’tenants’: 12,
’users_per_tenant’: 512}},
’runner’: {’concurrency’: 4, ’times’: 10000, ’type’: ’constant’}}

ac-
tion

min
(sec)

avg
(sec)

max
(sec)

90 per-
centile

95 per-
centile

suc-
cess

count apache enabled
keystone

pub-
lic_workers

total 0.537 0.998 4.553 1.233 1.391 100.0% 10000 N 1
total 0.189 0.296 5.099 0.417 0.474 100.0% 10000 N 4
total 0.208 0.299 3.228 0.437 0.485 100.0% 10000 Y NA

2. Concurrency = 16

{’context’: {’users’: {’concurrent’: 30,
’tenants’: 12,
’users_per_tenant’: 512}},
’runner’: {’concurrency’: 16, ’times’: 10000, ’type’: ’constant’}}

ac-
tion

min
(sec)

avg
(sec)

max
(sec)

90 per-
centile

95 per-
centile

suc-
cess

count apache enabled
keystone

pub-
lic_workers

total 1.036 3.905 11.254 5.258 5.700 100.0% 10000 N 1
total 0.187 1.012 5.894 1.61 1.856 100.0% 10000 N 4
total 0.515 0.970 2.076 1.113 1.192 100.0% 10000 Y NA

3. Concurrency = 32

{’context’: {’users’: {’concurrent’: 30,
’tenants’: 12,
’users_per_tenant’: 512}},
’runner’: {’concurrency’: 32, ’times’: 10000, ’type’: ’constant’}}

ac-
tion

min
(sec)

avg
(sec)

max
(sec)

90 per-
centile

95 per-
centile

suc-
cess

count apache enabled
keystone

pub-
lic_workers

total 1.493 7.752 16.007 10.428 11.183 100.0% 10000 N 1
total 0.198 1.967 8.54 3.223 3.701 100.0% 10000 N 4
total 1.115 1.986 6.224 2.133 2.244 100.0% 10000 Y NA

1.4.2 Finding a Keystone bug while benchmarking 20 node HA cloud performance
at creating 400 VMs

(Contributed by Alexander Maretskiy, Mirantis)

Below we describe how we found a bug in keystone and achieved 2x average performance increase at booting Nova
servers after fixing that bug. Our initial goal was to benchmark the booting of a significant amount of servers on

1.4. User stories 27

https://bugs.launchpad.net/keystone/+bug/1360446

Rally Documentation, Release 0.0.1

a cluster (running on a custom build of Mirantis OpenStack v5.1) and to ensure that this operation has reasonable
performance and completes with no errors.

Goal

• Get data on how a cluster behaves when a huge amount of servers is started

• Get data on how good the neutron component is good in this case

Summary

• Creating 400 servers with configured networking

• Servers are being created simultaneously - 5 servers at the same time

Hardware

Having a real hardware lab with 20 nodes:

Vendor SUPERMICRO SUPERSERVER
CPU 12 cores, Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz
RAM 32GB (4 x Samsung DDRIII 8GB)
HDD 1TB

Cluster

This cluster was created via Fuel Dashboard interface.

Rally

Version

For this benchmark, we use custom rally with the following patch:

https://review.openstack.org/#/c/96300/

Deployment

Rally was deployed for cluster using ExistingCloud type of deployment.

Server flavor

$ nova flavor-show ram64
+----------------------------+--------------------------------------+
| Property | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	0
extra_specs	{}
id	2e46aba0-9e7f-4572-8b0a-b12cfe7e06a1
name	ram64
os-flavor-access:is_public	True
ram	64
rxtx_factor	1.0
swap	

28 Chapter 1. Contents

https://software.mirantis.com/
https://review.openstack.org/#/c/96300/
https://github.com/stackforge/rally/blob/master/samples/deployments/existing.json

Rally Documentation, Release 0.0.1

| vcpus | 1 |
+----------------------------+--------------------------------------+

Server image

$ nova image-show TestVM
+----------------------------+---+
| Property | Value |
+----------------------------+---+
OS-EXT-IMG-SIZE:size	13167616
created	2014-08-21T11:18:49Z
id	7a0d90cb-4372-40ef-b711-8f63b0ea9678
metadata murano_image_info	{"title": "Murano Demo", "type": "cirros.demo"}
minDisk	0
minRam	64
name	TestVM
progress	100
status	ACTIVE
updated	2014-08-21T11:18:50Z
+----------------------------+---+

Task configuration file (in JSON format):

{
"NovaServers.boot_server": [

{
"args": {

"flavor": {
"name": "ram64"

},
"image": {

"name": "TestVM"
}

},
"runner": {

"type": "constant",
"concurrency": 5,
"times": 400

},
"context": {

"neutron_network": {
"network_ip_version": 4

},
"users": {

"concurrent": 30,
"users_per_tenant": 5,
"tenants": 5

},
"quotas": {

"neutron": {
"subnet": -1,
"port": -1,
"network": -1,
"router": -1

}
}

}
}

]

1.4. User stories 29

Rally Documentation, Release 0.0.1

}

The only difference between first and second run is that runner.times for first time was set to 500

Results

First time - a bug was found:

Starting from 142 server, we have error from novaclient: Error <class ‘novaclient.exceptions.Unauthorized’>: Unau-
thorized (HTTP 401).

That is how a bug in keystone was found.

action min (sec) avg (sec) max (sec) 90
percentile

95
percentile

success count

nova.boot_server
total

6.507
6.507

17.402
17.402

100.303
100.303

39.222
39.222

50.134
50.134

26.8%
26.8%

500
500

Second run, with bugfix:

After a patch was applied (using RPC instead of neutron client in metadata agent), we got 100% success and 2x
improved average perfomance:

action min (sec) avg (sec) max (sec) 90
percentile

95
percentile

success count

nova.boot_server
total

5.031
5.031

8.008
8.008

14.093
14.093

9.616
9.616

9.716
9.716

100.0%
100.0%

400
400

1.5 Rally Plugins

1.5.1 How plugins work

Rally provides an opportunity to create and use a custom benchmark scenario, runner or context as a plugin:

30 Chapter 1. Contents

https://bugs.launchpad.net/keystone/+bug/1360446

Rally Documentation, Release 0.0.1

Plugins can be quickly written and used, with no need to contribute them to the actual Rally code. Just place a python
module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory (or it’s subdirectories), and it
will be autoloaded.

1.5.2 Example: Benchmark scenario as a plugin

Let’s create as a plugin a simple scenario which lists flavors.

Creation

Inherit a class for your plugin from the base Scenario class and implement a scenario method inside it as usual. In our
scenario, let us first list flavors as an ordinary user, and then repeat the same using admin clients:

from rally.benchmark.scenarios import base

class ScenarioPlugin(base.Scenario):
"""Sample plugin which lists flavors."""

@base.atomic_action_timer("list_flavors")
def _list_flavors(self):

"""Sample of usage clients - list flavors

You can use self.context, self.admin_clients and self.clients which are
initialized on scenario instanse creation"""
self.clients("nova").flavors.list()

@base.atomic_action_timer("list_flavors_as_admin")
def _list_flavors_as_admin(self):

"""The same with admin clients"""

1.5. Rally Plugins 31

Rally Documentation, Release 0.0.1

self.admin_clients("nova").flavors.list()

@base.scenario()
def list_flavors(self):

"""List flavors."""
self._list_flavors()
self._list_flavors_as_admin()

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your plugin scenario in the benchmark task configuration files just in the same way as to any other
scenarios:

{
"ScenarioPlugin.list_flavors": [

{
"runner": {

"type": "serial",
"times": 5,

},
"context": {

"create_flavor": {
"ram": 512,

}
}

}
]

}

This configuration file uses the “create_flavor” context which we’ll create as a plugin below.

1.5.3 Example: Context as a plugin

Let’s create as a plugin a simple context which adds a flavor to the environment before the benchmark task starts and
deletes it after it finishes.

Creation

Inherit a class for your plugin from the base Context class. Then, implement the Context API: the setup() method that
creates a flavor and the cleanup() method that deletes it.

from rally.benchmark.context import base
from rally.common import log as logging
from rally import consts
from rally import osclients

LOG = logging.getLogger(__name__)

32 Chapter 1. Contents

Rally Documentation, Release 0.0.1

@base.context(name="create_flavor", order=1000)
class CreateFlavorContext(base.Context):

"""This sample create flavor with specified options before task starts and
delete it after task completion.

To create your own context plugin, inherit it from
rally.benchmark.context.base.Context
"""

CONFIG_SCHEMA = {
"type": "object",
"$schema": consts.JSON_SCHEMA,
"additionalProperties": False,
"properties": {

"flavor_name": {
"type": "string",

},
"ram": {

"type": "integer",
"minimum": 1

},
"vcpus": {

"type": "integer",
"minimum": 1

},
"disk": {

"type": "integer",
"minimum": 1

}
}

}

def setup(self):
"""This method is called before the task start"""
try:

use rally.osclients to get nessesary client instance
nova = osclients.Clients(self.context["admin"]["endpoint"]).nova()
and than do what you need with this client
self.context["flavor"] = nova.flavors.create(

context settings are stored in self.config
name=self.config.get("flavor_name", "rally_test_flavor"),
ram=self.config.get("ram", 1),
vcpus=self.config.get("vcpus", 1),
disk=self.config.get("disk", 1)).to_dict()

LOG.debug("Flavor with id ’%s’" % self.context["flavor"]["id"])
except Exception as e:

msg = "Can’t create flavor: %s" % e.message
if logging.is_debug():

LOG.exception(msg)
else:

LOG.warning(msg)

def cleanup(self):
"""This method is called after the task finish"""
try:

nova = osclients.Clients(self.context["admin"]["endpoint"]).nova()
nova.flavors.delete(self.context["flavor"]["id"])

1.5. Rally Plugins 33

Rally Documentation, Release 0.0.1

LOG.debug("Flavor ’%s’ deleted" % self.context["flavor"]["id"])
except Exception as e:

msg = "Can’t delete flavor: %s" % e.message
if logging.is_debug():

LOG.exception(msg)
else:

LOG.warning(msg)

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your plugin context in the benchmark task configuration files just in the same way as to any other
contexts:

{
"Dummy.dummy": [

{
"args": {

"sleep": 0.01
},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 1

},
"context": {

"users": {
"tenants": 1,
"users_per_tenant": 1

},
"create_flavor": {

"ram": 1024
}

}
}

]
}

1.5.4 Example: SLA as a plugin

Let’s create as a plugin an SLA (success criterion) which checks whether the range of the observed performance
measurements does not exceed the allowed maximum value.

Creation

Inherit a class for your plugin from the base SLA class and implement its API (the check() method):

34 Chapter 1. Contents

Rally Documentation, Release 0.0.1

from rally.benchmark.sla import base

class MaxDurationRange(base.SLA):
"""Maximum allowed duration range in seconds."""
OPTION_NAME = "max_duration_range"
CONFIG_SCHEMA = {"type": "number", "minimum": 0.0,

"exclusiveMinimum": True}

@staticmethod
def check(criterion_value, result):

durations = [r["duration"] for r in result if not r.get("error")]
durations_range = max(durations) - min(durations)
success = durations_range <= criterion_value
msg = (_("Maximum duration range per iteration %ss, actual %ss")

% (criterion_value, durations_range))
return base.SLAResult(success, msg)

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your SLA in the benchmark task configuration files just in the same way as to any other SLA:

{
"Dummy.dummy": [

{
"args": {

"sleep": 0.01
},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 1

},
"context": {

"users": {
"tenants": 1,
"users_per_tenant": 1

}
},
"sla": {

"max_duration_range": 2.5
}

}
]

}

1.5. Rally Plugins 35

Rally Documentation, Release 0.0.1

1.5.5 Example: Scenario runner as a plugin

Let’s create as a plugin a scenario runner which runs a given benchmark scenario for a random number of times
(chosen at random from a given range).

Creation

Inherit a class for your plugin from the base ScenarioRunner class and implement its API (the _run_scenario()
method):

import random

from rally.benchmark.runners import base
from rally import consts

class RandomTimesScenarioRunner(base.ScenarioRunner):
"""Sample of scenario runner plugin.

Run scenario random number of times, which is choosen between min_times and
max_times.
"""

__execution_type__ = "random_times"

CONFIG_SCHEMA = {
"type": "object",
"$schema": consts.JSON_SCHEMA,
"properties": {

"type": {
"type": "string"

},
"min_times": {

"type": "integer",
"minimum": 1

},
"max_times": {

"type": "integer",
"minimum": 1

}
},
"additionalProperties": True

}

def _run_scenario(self, cls, method_name, context, args):
runners settings are stored in self.config
min_times = self.config.get(’min_times’, 1)
max_times = self.config.get(’max_times’, 1)

for i in range(random.randrange(min_times, max_times)):
run_args = (i, cls, method_name,

base._get_scenario_context(context), args)
result = base._run_scenario_once(run_args)
use self.send_result for result of each iteration
self._send_result(result)

36 Chapter 1. Contents

Rally Documentation, Release 0.0.1

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your scenario runner in the benchmark task configuration files just in the same way as to any other run-
ners. Don’t forget to put you runner-specific parameters to the configuration as well (“min_times” and “max_times”
in our example):

{
"Dummy.dummy": [

{
"runner": {

"type": "random_times",
"min_times": 10,
"max_times": 20,

},
"context": {

"users": {
"tenants": 1,
"users_per_tenant": 1

}
}

}
]

}

Different plugin samples are available here.

1.6 Contribute to Rally

1.6.1 Where to begin

Please take a look our Roadmap to get information about our current work directions.

In case you have questions or want to share your ideas, be sure to contact us at the #openstack-rally IRC
channel on irc.freenode.net.

If you are going to contribute to Rally, you will probably need to grasp a better understanding of several main design
concepts used throughout our project (such as benchmark scenarios, contexts etc.). To do so, please read this article.

1.6.2 How to contribute

1. You need a Launchpad account and need to be joined to the Openstack team. You can also join the Rally team
if you want to. Make sure Launchpad has your SSH key, Gerrit (the code review system) uses this.

2. Sign the CLA as outlined in the account setup section of the developer guide.

3. Tell git your details:

1.6. Contribute to Rally 37

https://github.com/stackforge/rally/tree/master/samples/plugins
https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0
https://launchpad.net/
https://launchpad.net/openstack
https://launchpad.net/rally
http://docs.openstack.org/infra/manual/developers.html#development-workflow

Rally Documentation, Release 0.0.1

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

4. Install git-review. This tool takes a lot of the pain out of remembering commands to push code up to Gerrit for
review and to pull it back down to edit it. It is installed using:

pip install git-review

Several Linux distributions (notably Fedora 16 and Ubuntu 12.04) are also starting to include git-review in their
repositories so it can also be installed using the standard package manager.

5. Grab the Rally repository:

git clone git@github.com:stackforge/rally.git

6. Checkout a new branch to hack on:

git checkout -b TOPIC-BRANCH

7. Start coding

8. Run the test suite locally to make sure nothing broke, e.g. (this will run py26/py27/pep8 tests):

tox

(NOTE: you should have installed tox<=1.6.1)

If you extend Rally with new functionality, make sure you have also provided unit and/or functional tests for it.

9. Commit your work using:

git commit -a

Make sure you have supplied your commit with a neat commit message, containing a link to the corresponding
blueprint / bug, if appropriate.

10. Push the commit up for code review using:

git review -R

That is the awesome tool we installed earlier that does a lot of hard work for you.

11. Watch your email or review site, it will automatically send your code for a battery of tests on our Jenkins setup
and the core team for the project will review your code. If there are any changes that should be made they will
let you know.

12. When all is good the review site will automatically merge your code.

(This tutorial is based on: http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html)

1.6.3 Testing

Please, don’t hesitate to write tests ;)

Unit tests

Files: /tests/unit/*

The goal of unit tests is to ensure that internal parts of the code work properly. All internal methods should be fully
covered by unit tests with a reasonable mocks usage.

38 Chapter 1. Contents

http://review.openstack.org/
http://jenkins.openstack.org/
http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html

Rally Documentation, Release 0.0.1

About Rally unit tests:

• All unit tests are located inside /tests/unit/*

• Tests are written on top of: testtools, fixtures and mock libs

• Tox is used to run unit tests

To run unit tests locally:

$ pip install tox
$ tox

To run py26, py27 or pep8 only:

$ tox -e <name>

#NOTE: <name> is one of py26, py27 or pep8

To get test coverage:

$ tox -e cover

#NOTE: Results will be in /cover/index.html

To generate docs:

$ tox -e docs

#NOTE: Documentation will be in doc/source/_build/html/index.html

Functional tests

Files: /tests/functional/*

The goal of functional tests is to check that everything works well together. Fuctional tests use Rally API only and
check responses without touching internal parts.

To run functional tests locally:

$ source openrc
$ rally deployment create --fromenv --name testing
$ tox -e cli

#NOTE: openrc file with OpenStack admin credentials

Rally CI scripts

Files: /tests/ci/*

This directory contains scripts and files related to the Rally CI system.

Rally Style Commandments

Files: /tests/hacking/

This module contains Rally specific hacking rules for checking commandments.

For more information about Style Commandments, read the OpenStack Style Commandments manual.

1.6. Contribute to Rally 39

http://en.wikipedia.org/wiki/Unit_testing
https://tox.readthedocs.org/en/latest/
https://en.wikipedia.org/wiki/Functional_testing
http://docs.openstack.org/developer/hacking/

Rally Documentation, Release 0.0.1

1.7 Rally OS Gates

1.7.1 Gate jobs

The Openstack CI system uses the so-called “Gate jobs” to control merges of patched submitted for review on Gerrit.
These Gate jobs usually just launch a set of tests – unit, functional, integration, style – that check that the proposed
patch does not break the software and can be merged into the target branch, thus providing additional guarantees for
the stability of the software.

1.7.2 Create a custom Rally Gate job

You can create a Rally Gate job for your project to run Rally benchmarks against the patchsets proposed to be merged
into your project.

To create a rally-gate job, you should create a rally-jobs/ directory at the root of your project.

As a rule, this directory contains only {projectname}.yaml, but more scenarios and jobs can be added as well. This
yaml file is in fact an input Rally task file specifying benchmark scenarios that should be run in your gate job.

To make {projectname}.yaml run in gates, you need to add “rally-jobs” to the “jobs” section of projects.yaml in
openstack-infra/project-config.

1.7.3 Example: Rally Gate job for Glance

Let’s take a look at an example for the Glance project:

Edit jenkins/jobs/projects.yaml:

- project:
name: glance
node: ‘bare-precise || bare-trusty’
tarball-site: tarballs.openstack.org
doc-publisher-site: docs.openstack.org

jobs:
- python-jobs
- python-icehouse-bitrot-jobs
- python-juno-bitrot-jobs
- openstack-publish-jobs
- translation-jobs
- rally-jobs

Also add gate-rally-dsvm-{projectname} to zuul/layout.yaml:

- name: openstack/glance
template:

- name: merge-check
- name: python26-jobs
- name: python-jobs
- name: openstack-server-publish-jobs
- name: openstack-server-release-jobs
- name: periodic-icehouse
- name: periodic-juno
- name: check-requirements
- name: integrated-gate

40 Chapter 1. Contents

https://wiki.openstack.org/wiki/Glance

Rally Documentation, Release 0.0.1

- name: translation-jobs
- name: large-ops
- name: experimental-tripleo-jobs

check:
- check-devstack-dsvm-cells
- gate-rally-dsvm-glance

gate:
- gate-devstack-dsvm-cells

experimental:
- gate-grenade-dsvm-forward

To add one more scenario and job, you need to add {scenarioname}.yaml file here, and gate-rally-dsvm-
{scenarioname} to projects.yaml.

For example, you can add myscenario.yaml to rally-jobs directory in your project and then edit jenk-
ins/jobs/projects.yaml in this way:

- project:
name: glance
github-org: openstack
node: bare-precise
tarball-site: tarballs.openstack.org
doc-publisher-site: docs.openstack.org

jobs:
- python-jobs
- python-havana-bitrot-jobs
- openstack-publish-jobs
- translation-jobs
- rally-jobs
- ‘gate-rally-dsvm-{name}’:

name: myscenario

Finally, add gate-rally-dsvm-myscenario to zuul/layout.yaml:

- name: openstack/glance
template:

- name: python-jobs
- name: openstack-server-publish-jobs
- name: periodic-havana
- name: check-requirements
- name: integrated-gate

check:
- check-devstack-dsvm-cells
- check-tempest-dsvm-postgres-full
- gate-tempest-dsvm-large-ops
- gate-tempest-dsvm-neutron-large-ops
- gate-rally-dsvm-myscenario

It is also possible to arrange your input task files as templates based on jinja2. Say, you want to set the image names
used throughout the myscenario.yaml task file as a variable parameter. Then, replace concrete image names in this file
with a variable:
...

NovaServers.boot_and_delete_server:
-
args:

1.7. Rally OS Gates 41

Rally Documentation, Release 0.0.1

image:
name: {{image_name}}

...

NovaServers.boot_and_list_server:
-
args:

image:
name: {{image_name}}

...

and create a file named myscenario_args.yaml that will define the parameter values:

image_name: "^cirros.*uec$"

this file will be automatically used by Rally to substitute the variables in myscenario.yaml.

1.7.4 Plugins & Extras in Rally Gate jobs

Along with scenario configs in yaml, the rally-jobs directory can also contain two subdirectories:

• plugins: Plugins needed for your gate job;

• extra: auxiliary files like bash scripts or images.

Both subdirectories will be copied to ~/.rally/ before the job gets started.

1.8 Request New Features

To request a new feature, you should create a document similar to other feature requests and then contribute it to the
doc/feature_request directory of the Rally repository (see the How-to-contribute tutorial).

If you don’t have time to contribute your feature request via gerrit, please contact Boris Pavlovic (boris@pavlovic.me)

Active feature requests:

1.8.1 Support benchmarking clouds that are using LDAP

Use Case

A lot of production clouds are using LDAP with read only access. It means that load can be generated only by existing
in system users and there is no admin access.

Problem Description

Rally is using admin access to create temporary users that will be used to produce load.

Possible Solution

• Drop admin requirements

• Add way to pass already existing users

42 Chapter 1. Contents

mailto:boris@pavlovic.me

Rally Documentation, Release 0.0.1

1.8.2 Ability to compare results between task

Use case

During the work on performance it’s essential to be able to compare results of similar task before and after change in
system.

Problem description

There is no command to compare two or more tasks and get tables and graphs.

Possible solution

• Add command that accepts 2 tasks UUID and prints graphs that compares result

1.8.3 Distributed load generation

Use Case

Some OpenStack projects (Marconi, MagnetoDB) require a real huge load, like 10-100k request per second for bench-
marking.

To generate such huge load Rally have to create load from different servers.

Problem Description

• Rally can’t generate load from different servers

• Result processing can’t handle big amount of data

• There is no support for chunking results

1.8.4 Historical performance data

Use case

OpenStack is really rapidly developed. Hundreds patches are merged daily and it’s really hard to track how perfor-
mance is changed during time. It will be nice to have a way to track performance of major functionality of OpenStack
running periodically rally task and building graphs that represent how performance of specific method is changed
during the time.

Problem description

There is no way to bind tasks

Possible solution

• Add grouping for tasks

• Add command that creates historical graphs

1.8. Request New Features 43

Rally Documentation, Release 0.0.1

1.8.5 Using multi scenarios to generate load

Use Case

Rally should be able to generate real life load. Simultaneously create load on different components of OpenStack, e.g.
simultaneously booting VM, uploading image and listing users.

Problem Description

At the moment Rally is able to run only 1 scenario per benchmark. Scenario are quite specific (e.g. boot and delete
VM for example) and can’t actually generate real life load.

Writing a lot of specific benchmark scenarios that will produce more real life load will produce mess and a lot of
duplication of code.

Possible solution

• Extend Rally task benchmark configuration in such way to support passing multiple benchmark scenarios in
singe benchmark context

• Extend Rally task output format to support results of multiple scenarios in single benchmark separately.

• Extend rally task plot2html and rally task detailed to show results separately for every scenario.

1.8.6 Add support of persistence benchmark environment

Use Case

To benchmark many of operations like show, list, detailed you need to have already these resource in cloud. So it will
be nice to be able to create benchmark environment once before benchmarking. The run some amount of benchmarks
that are using it and at the end just delete all created resources by benchmark environment.

Problem Description

Fortunately Rally has already a mechanism for creating benchmark environment, that is used to create load. Unfortu-
nately it’s atomic operation: (create environment, make load, delete environment). This should be split to 3 separated
steps.

Possible solution

• Add new CLI operations to work with benchmark environment: (show, create, delete, list)

• Allow task to start against benchmark environment (instead of deployment)

1.8.7 Production read cleanups

Use Case

Rally should delete in any case all resources that it created during benchmark.

44 Chapter 1. Contents

Rally Documentation, Release 0.0.1

Problem Description

• (implemented) Deletion rate limit

You can kill cloud by deleting too many objects simultaneously, so deletion rate limit is required

• (implemented) Retry on failures

There should be few attempts to delete resource in case of failures

• (implemented) Log resources that failed to be deleted

We should log warnings about all non deleted resources. This information should include UUID of resource,
it’s type and project.

• (implemented) Pluggable

It should be simple to add new cleanups adding just plugins somewhere.

• Disaster recovery

Rally should use special name patterns, to be able to delete resources in such case if something went wrong with
server that is running rally. And you have just new instance (without old rally db) of rally on new server.

1.8.8 Stop scenario after several errors

Use case

Starting long tests on the big environments.

Problem description

When we start a rally scenarios on the env where keystone die we get a lot of time from timeout

Example

Times in hard tests 05:25:40 rally-scenarios.cinder 05:25:40 create-and-delete-volume [4074 iterations, 15 threads]
OK 8.91 08:00:02 create-and-delete-snapshot [5238 iterations, 15 threads] OK 17.46 08:53:20 create-and-list-
volume [4074 iterations, 15 threads] OK 3.18 12:04:14 create-snapshot-and-attach-volume [2619 iterations, 15
threads] FAIL 14:18:44 create-and-attach-volume [2619 iterations, 15 threads] FAIL 14:23:47 rally-scenarios.vm
14:23:47 boot_runcommand_metadata_delete [5 iterations, 5 threads] FAIL 16:30:46 rally-scenarios.nova 16:30:46
boot_and_list_server [5820 iterations, 15 threads] FAIL 19:19:30 resize_server [5820 iterations, 15 threads] FAIL
02:51:13 boot_and_delete_server_with_secgroups [5820 iterations, 60 threads] FAIL

Times in light variant 00:38:25 rally-scenarios.cinder 00:38:25 create-and-delete-volume [14 iterations, 1 threads]
OK 5.30 00:40:39 create-and-delete-snapshot [18 iterations, 1 threads] OK 5.65 00:41:52 create-and-list-volume
[14 iterations, 1 threads] OK 2.89 00:45:18 create-snapshot-and-attach-volume [9 iterations, 1 threads] OK
17.75 00:48:54 create-and-attach-volume [9 iterations, 1 threads] OK 20.04 00:52:29 rally-scenarios.vm 00:52:29
boot_runcommand_metadata_delete [5 iterations, 5 threads] OK 128.86 00:56:42 rally-scenarios.nova 00:56:42
boot_and_list_server [20 iterations, 1 threads] OK 6.98 01:04:48 resize_server [20 iterations, 1 threads] OK 22.90

In the hard test we have a lot of timeouts from keystone and a lot of time on test execution

1.8. Request New Features 45

Rally Documentation, Release 0.0.1

Possible solution

Improve SLA check functionality to work “online”. And add ability to control execution process and stop load gener-
ation in case of sla check failures.

1.9 Project Info

1.9.1 Useful links

• Source code

• Rally road map

• Project space

• Bugs

• Patches on review

• Meeting logs (server: irc.freenode.net, channel: #openstack-meeting)

• IRC logs (server: irc.freenode.net, channel: #openstack-rally, each Tuesday at 17:00 UTC)

1.9.2 Where can I discuss and propose changes?

• Our IRC channel: #openstack-rally on irc.freenode.net;

• Weekly Rally team meeting (in IRC): #openstack-meeting on irc.freenode.net, held on Tuesdays at 17:00
UTC;

• Openstack mailing list: openstack-dev@lists.openstack.org (see subscription and usage instructions);

• Rally team on Launchpad: Answers/Bugs/Blueprints.

46 Chapter 1. Contents

https://github.com/stackforge/rally
https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0
http://launchpad.net/rally
https://bugs.launchpad.net/rally
https://review.openstack.org/#/q/status:open+rally,n,z
http://eavesdrop.openstack.org/meetings/rally/2015/
http://irclog.perlgeek.de/openstack-rally
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://launchpad.net/rally

	Contents
	Overview
	Installation
	Rally step-by-step
	User stories
	Rally Plugins
	Contribute to Rally
	Rally OS Gates
	Request New Features
	Project Info

