

 Navigation

 	
 index

 	
 next |

 	Rally 0.8.1 documentation

What is Rally?

OpenStack is, undoubtedly, a really huge ecosystem of cooperative
services. Rally is a benchmarking tool that answers the question:
"How does OpenStack work at scale?". To make this possible, Rally
automates and unifies multi-node OpenStack deployment, cloud
verification, benchmarking & profiling. Rally does it in a generic way,
making it possible to check whether OpenStack is going to work well on, say, a
1k-servers installation under high load. Thus it can be used as a basic tool
for an OpenStack CI/CD system that would continuously improve its SLA,
performance and stability.

[image: _images/Rally-Actions.png]

Contents

	Rally project overview
	Overview

	Glossary

	User stories

	Installation and upgrades
	Installation process

	Database upgrade in Rally

	Quick start
	Rally step-by-step

	Rally OpenStack Gates

	Command Line Interface
	Category: db

	Category: deployment

	Category: plugin

	Category: task

	Category: verify

	Task Component
	HTML Reports

	CLI References

	Verification Component
	Verifiers

	Verification reports

	Command Line Interface

	HowTo

	Historical background

	What is Verification Component and why do you need it?

	Rally Plugins
	Plugins Reference

	How plugins work

	Placement

	How to create a plugin

	Contribute to Rally
	Where to begin

	How to contribute

	Testing

	Request New Features
	Capture Logs from services

	Check queue perfdata

	Ability to compare results between task

	Distributed load generation

	Explicitly specify existing users for scenarios

	Historical performance data

	Enhancements to installation script: --version and --uninstall

	Installation script: --pypi-mirror, --package-mirror and --venv-mirror

	Launch Specific Benchmark(s)

	Using multi scenarios to generate load

	Multiple attach volume

	Add support of persistence benchmark environment

	Production read cleanups

	Project Info and Release Notes
	Maintainers

	Useful links

	Where can I discuss and propose changes?

	Release Notes

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Rally project overview

	Overview
	Who Is Using Rally

	Use Cases

	Real-life examples
	How does amqp_rpc_single_reply_queue affect performance?

	Performance of Nova list command

	Complex scenarios

	Architecture

	Glossary

	User stories
	4x performance increase in Keystone inside Apache using the token creation benchmark
	Goal

	Summary

	Setup

	Results

	Finding a Keystone bug while benchmarking 20 node HA cloud performance at creating 400 VMs
	Goal

	Summary

	Hardware

	Cluster

	Rally

	Results

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally project overview

	Overview

Overview

Rally is a benchmarking tool that automates and unifies
multi-node OpenStack deployment, cloud verification, benchmarking & profiling.
It can be used as a basic tool for an OpenStack CI/CD system that would
continuously improve its SLA, performance and stability.

Who Is Using Rally

Here's a small selection of some of the many companies using Rally:

[image: ../_images/Rally_who_is_using.png]

Use Cases

Let's take a look at 3 major high level Use Cases of Rally:

[image: ../_images/Rally-UseCases.png]
Generally, there are a few typical cases where Rally proves to be of great use:

	Automate measuring & profiling focused on how new code changes affect
the OS performance;

	Using Rally profiler to detect scaling & performance issues;

	Investigate how different deployments affect the OS performance:

	Find the set of suitable OpenStack deployment architectures;

	Create deployment specifications for different loads (amount of
controllers, swift nodes, etc.);

	Automate the search for hardware best suited for particular OpenStack
cloud;

	Automate the production cloud specification generation:

	Determine terminal loads for basic cloud operations: VM start & stop,
Block Device create/destroy & various OpenStack API methods;

	Check performance of basic cloud operations in case of different
loads.

Real-life examples

To be substantive, let's investigate a couple of real-life examples of Rally in
action.

How does amqp_rpc_single_reply_queue affect performance?

Rally allowed us to reveal a quite an interesting fact about Nova. We used
NovaServers.boot_and_delete benchmark scenario to see how the
amqp_rpc_single_reply_queue option affects VM bootup time (it turns on a kind
of fast RPC). Some time ago it was
shown [https://docs.google.com/file/d/0B-droFdkDaVhVzhsN3RKRlFLODQ/edit?pli=1]
that cloud performance can be boosted by setting it on, so we naturally decided
to check this result with Rally. To make this test, we issued requests for
booting and deleting VMs for a number of concurrent users ranging from 1 to 30
with and without the investigated option. For each group of users, a total
number of 200 requests was issued. Averaged time per request is shown below:

[image: ../_images/Amqp_rpc_single_reply_queue.png]
So Rally has unexpectedly indicated that setting the
amqp_rpc_single_reply_queue option apparently affects the cloud performance,
but in quite an opposite way rather than it was thought before.

Performance of Nova list command

Another interesting result comes from the NovaServers.boot_and_list_server
scenario, which enabled us to we launched the following benchmark with Rally:

	Benchmark environment (which we also call "Context"): 1 temporary
OpenStack user.

	Benchmark scenario: boot a single VM from this user & list all VMs.

	Benchmark runner setting: repeat this procedure 200 times in a
continuous way.

During the execution of this benchmark scenario, the user has more and more VMs
on each iteration. Rally has shown that in this case, the performance of the
VM list command in Nova is degrading much faster than one might expect:

[image: ../_images/Rally_VM_list.png]

Complex scenarios

In fact, the vast majority of Rally scenarios is expressed as a sequence of
"atomic" actions. For example, NovaServers.snapshot is composed of 6
atomic actions:

	boot VM

	snapshot VM

	delete VM

	boot VM from snapshot

	delete VM

	delete snapshot

Rally measures not only the performance of the benchmark scenario as a whole,
but also that of single atomic actions. As a result, Rally also plots the
atomic actions performance data for each benchmark iteration in a quite
detailed way:

[image: ../_images/Rally_snapshot_vm.png]

Architecture

Usually OpenStack projects are implemented "as-a-Service", so Rally provides
this approach. In addition, it implements a CLI-driven approach that does not
require a daemon:

	Rally as-a-Service: Run rally as a set of daemons that present Web
UI (work in progress) so 1 RaaS could be used by a whole team.

	Rally as-an-App: Rally as a just lightweight and portable CLI app
(without any daemons) that makes it simple to use & develop.

The diagram below shows how this is possible:

[image: ../_images/Rally_Architecture.png]
The actual Rally core consists of 4 main components, listed below in the
order they go into action:

	Server Providers - provide a unified interface for interaction
with different virtualization technologies (LXS, Virsh etc.) and
cloud suppliers (like Amazon): it does so via ssh access and in
one L3 network;

	Deploy Engines - deploy some OpenStack distribution (like DevStack
or FUEL) before any benchmarking procedures take place, using servers
retrieved from Server Providers;

	Verification - runs Tempest (or another specific set of tests)
against the deployed cloud to check that it works correctly, collects
results & presents them in human readable form;

	Benchmark Engine - allows to write parameterized benchmark scenarios
& run them against the cloud.

It should become fairly obvious why Rally core needs to be split to these parts
if you take a look at the following diagram that visualizes a rough algorithm
for starting benchmarking OpenStack at scale. Keep in mind that there might
be lots of different ways to set up virtual servers, as well as to deploy
OpenStack to them.

[image: ../_images/Rally_QA.png]

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally project overview

Glossary

Warning

Unfortunately, our glossary is not full, but the Rally
team is working on improving it. If you cannot find a definition in
which you are interested, feel free to ping us via IRC
(#openstack-rally channel at Freenode) or via E-Mail
(openstack-dev@lists.openstack.org with tag [Rally]).

	Common

	Deployment

	Task

	Verify

Common

Alembic

A lightweight database migration tool which powers Rally migrations. Read more
at Official Alembic documentation [http://alembic.readthedocs.io/en/latest/]

DB Migrations

Rally supports database schema and data transformations, which are also
known as migrations. This allows you to get your data up-to-date with
latest Rally version.

Rally

A testing tool that automates and unifies multi-node OpenStack deployment
and cloud verification. It can be used as a basic tool
for an OpenStack CI/CD system that would continuously improve its SLA,
performance and stability.

Rally Config

Rally behavior can be customized by editing its configuration file,
rally.conf, in configparser [https://docs.python.org/3.4/library/configparser.html]
format. While being installed, Rally generates a config with default
values from its sample [https://github.com/openstack/rally/blob/master/etc/rally/rally.conf.sample].
When started, Rally searches for its config in
"<sys.prefix>/etc/rally/rally.conf", "~/.rally/rally.conf",
"/etc/rally/rally.conf"

Rally DB

Rally uses a relational database as data storage. Several database backends
are supported: SQLite (default), PostgreSQL, and MySQL.
The database connection can be set via the configuration file option
[database]/connection.

Rally Plugin

Most parts of Rally
are pluggable [https://rally.readthedocs.io/en/latest/plugins.html].
Scenarios, runners, contexts and even charts for HTML report are plugins.
It is easy to create your own plugin and use it. Read more at
plugin reference [https://rally.readthedocs.io/en/latest/plugin/plugin_reference.html].

Deployment

Deployment

A set of information about target environment (for example: URI and
authentication credentials) which is saved in the database. It is used
to define the target system for testing each time a task is started.
It has a "type" value which changes task behavior for the selected
target system; for example type "openstack" will enable OpenStack
authentication and services.

Task

Cleanup

This is a specific context which removes all resources on target
system that were created by the current task. If some Rally-related
resources remain, please file a bug [https://bugs.launchpad.net/rally] and attach the task file and a
list of remaining resources.

Context

A type of plugin that can run some actions on the target environment
before the workloads start and after the last workload finishes. This
allows, for example, preparing the environment for workloads (e.g.,
create resources and change parameters) and restoring the environment
later. Each Context must implement setup() and cleanup()
methods.

Input task

A file that describes how to run a Rally Task. It can be in JSON or
YAML format. The rally task start command needs this file to run
the task. The input task is pre-processed by the Jinja2 [http://jinja.pocoo.org/] templating engine so it is very easy to
create repeated parts or calculate specific values at runtime. It is
also possible to pass values via CLI arguments, using the
--task-args or --task-args-file options.

Runner

This is a Rally plugin which decides how to run Workloads. For
example, they can be run serially in a single process, or using
concurrency.

Scenario

Synonym for Workload

Service

Abstraction layer that represents target environment API. For
example, this can be some OpenStack service. A Service provides API
versioning and action timings, simplifies API calls, and reduces code
duplication. It can be used in any Rally plugin.

SLA

Service-Level Agreement (Success Criteria).
Allows you to determine whether a subtask or workload is successful
by setting success criteria rules.

Subtask

A part of a Task. There can be many subtasks in a single Task.

Task

An entity which includes all the necessary data for a test run, and
results of this run.

Workload

An important part of Task: a plugin which is run by the runner. It is
usually run in separate thread. Workloads are grouped into Subtasks.

Verify

Rally can run different subunit-based testing tools against a target
environment, for example tempest [http://docs.openstack.org/developer/tempest/] for OpenStack.

Verification

A result of running some third-party subunit-based testing tool.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally project overview

User stories

Many users of Rally were able to make interesting discoveries concerning their
OpenStack clouds using our benchmarking tool. Numerous user stories presented
below show how Rally has made it possible to find performance bugs and validate
improvements for different OpenStack installations.

	4x performance increase in Keystone inside Apache using the token creation benchmark

	Finding a Keystone bug while benchmarking 20 node HA cloud performance at creating 400 VMs

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally project overview

 	User stories

4x performance increase in Keystone inside Apache using the token creation benchmark

(Contributed by Neependra Khare, Red Hat)

Below we describe how we were able to get and verify a 4x better performance of
Keystone inside Apache. To do that, we ran a Keystone token creation benchmark
with Rally under different load (this benchmark scenario essentially just
authenticate users with keystone to get tokens).

Goal

	Get the data about performance of token creation under different load.

	Ensure that keystone with increased public_workers/admin_workers values and
under Apache works better than the default setup.

Summary

	As the concurrency increases, time to authenticate the user gets up.

	Keystone is CPU bound process and by default only one thread of
keystone-all process get started. We can increase the parallelism by:
	increasing public_workers/admin_workers values in keystone.conf file

	running Keystone inside Apache

	We configured Keystone with 4 public_workers and ran Keystone inside
Apache. In both cases we got up to 4x better performance as compared to
default Keystone configuration.

Setup

Server : Dell PowerEdge R610

CPU make and model : Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

CPU count: 24

RAM : 48 GB

Devstack - Commit#d65f7a2858fb047b20470e8fa62ddaede2787a85

Keystone - Commit#455d50e8ae360c2a7598a61d87d9d341e5d9d3ed

Keystone API - 2

To increase public_workers - Uncomment line with public_workers and set
public_workers to 4. Then restart Keystone service.

To run Keystone inside Apache - Added APACHE_ENABLED_SERVICES=key in
localrc file while setting up OpenStack environment with Devstack.

Results

	Concurrency = 4

{'context': {'users': {'concurrent': 30,
 'tenants': 12,
 'users_per_tenant': 512}},
 'runner': {'concurrency': 4, 'times': 10000, 'type': 'constant'}}

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count
	apache enabled keystone
	public_workers

	total
	0.537
	0.998
	4.553
	1.233
	1.391
	100.0%
	10000
	N
	1

	total
	0.189
	0.296
	5.099
	0.417
	0.474
	100.0%
	10000
	N
	4

	total
	0.208
	0.299
	3.228
	0.437
	0.485
	100.0%
	10000
	Y
	NA

	Concurrency = 16

{'context': {'users': {'concurrent': 30,
 'tenants': 12,
 'users_per_tenant': 512}},
 'runner': {'concurrency': 16, 'times': 10000, 'type': 'constant'}}

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count
	apache enabled keystone
	public_workers

	total
	1.036
	3.905
	11.254
	5.258
	5.700
	100.0%
	10000
	N
	1

	total
	0.187
	1.012
	5.894
	1.61
	1.856
	100.0%
	10000
	N
	4

	total
	0.515
	0.970
	2.076
	1.113
	1.192
	100.0%
	10000
	Y
	NA

	Concurrency = 32

{'context': {'users': {'concurrent': 30,
 'tenants': 12,
 'users_per_tenant': 512}},
 'runner': {'concurrency': 32, 'times': 10000, 'type': 'constant'}}

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count
	apache enabled keystone
	public_workers

	total
	1.493
	7.752
	16.007
	10.428
	11.183
	100.0%
	10000
	N
	1

	total
	0.198
	1.967
	8.54
	3.223
	3.701
	100.0%
	10000
	N
	4

	total
	1.115
	1.986
	6.224
	2.133
	2.244
	100.0%
	10000
	Y
	NA

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally project overview

 	User stories

Finding a Keystone bug while benchmarking 20 node HA cloud performance at creating 400 VMs

(Contributed by Alexander Maretskiy, Mirantis)

Below we describe how we found a bug in Keystone [https://bugs.launchpad.net/keystone/+bug/1360446] and achieved 2x average
performance increase at booting Nova servers after fixing that bug. Our initial
goal was to benchmark the booting of a significant amount of servers on a
cluster (running on a custom build of Mirantis OpenStack [https://software.mirantis.com/] v5.1) and to ensure
that this operation has reasonable performance and completes with no errors.

Goal

	Get data on how a cluster behaves when a huge amount of servers is started

	Get data on how good the neutron component is good in this case

Summary

	Creating 400 servers with configured networking

	Servers are being created simultaneously - 5 servers at the same time

Hardware

Having a real hardware lab with 20 nodes:

	Vendor
	SUPERMICRO SUPERSERVER

	CPU
	12 cores, Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz

	RAM
	32GB (4 x Samsung DDRIII 8GB)

	HDD
	1TB

Cluster

This cluster was created via Fuel Dashboard interface.

	Deployment
	Custom build of Mirantis OpenStack [https://software.mirantis.com/] v5.1

	OpenStack release
	Icehouse

	Operating System
	Ubuntu 12.04.4

	Mode
	High availability

	Hypervisor
	KVM

	Networking
	Neutron with GRE segmentation

	Controller nodes
	3

	Compute nodes
	17

Rally

Version

For this benchmark, we use custom Rally with the following patch:

https://review.openstack.org/#/c/96300/

Deployment

Rally was deployed for cluster using ExistingCloud [https://github.com/openstack/rally/blob/master/samples/deployments/existing.json] type of deployment.

Server flavor

$ nova flavor-show ram64
+----------------------------+--------------------------------------+
| Property | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	0
extra_specs	{}
id	2e46aba0-9e7f-4572-8b0a-b12cfe7e06a1
name	ram64
os-flavor-access:is_public	True
ram	64
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+--------------------------------------+

Server image

$ nova image-show TestVM
+----------------------------+---+
| Property | Value |
+----------------------------+---+
OS-EXT-IMG-SIZE:size	13167616
created	2014-08-21T11:18:49Z
id	7a0d90cb-4372-40ef-b711-8f63b0ea9678
metadata murano_image_info	{"title": "Murano Demo", "type": "cirros.demo"}
minDisk	0
minRam	64
name	TestVM
progress	100
status	ACTIVE
updated	2014-08-21T11:18:50Z
+----------------------------+---+

Task configuration file (in JSON format):

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor": {
 "name": "ram64"
 },
 "image": {
 "name": "TestVM"
 }
 },
 "runner": {
 "type": "constant",
 "concurrency": 5,
 "times": 400
 },
 "context": {
 "neutron_network": {
 "network_ip_version": 4
 },
 "users": {
 "concurrent": 30,
 "users_per_tenant": 5,
 "tenants": 5
 },
 "quotas": {
 "neutron": {
 "subnet": -1,
 "port": -1,
 "network": -1,
 "router": -1
 }
 }
 }
 }
]
}

The only difference between first and second run is that runner.times for first
time was set to 500

Results

First time - a bug was found:

Starting from 142 server, we have error from novaclient: Error <class
'novaclient.exceptions.Unauthorized'>: Unauthorized (HTTP 401).

That is how a bug in Keystone [https://bugs.launchpad.net/keystone/+bug/1360446] was found.

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count

	nova.boot_server
total
	6.507
6.507
	17.402
17.402
	100.303
100.303
	39.222
39.222
	50.134
50.134
	26.8%
26.8%
	500
500

Second run, with bugfix:

After a patch was applied (using RPC instead of neutron client in metadata
agent), we got 100% success and 2x improved average performance:

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count

	nova.boot_server
total
	5.031
5.031
	8.008
8.008
	14.093
14.093
	9.616
9.616
	9.716
9.716
	100.0%
100.0%
	400
400

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Installation and upgrades

	Installation process
	Automated installation

	Rally with DevStack all-in-one installation

	Rally & Docker

	Database upgrade in Rally
	Information for users

	Information for developers

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Installation and upgrades

Installation process

Automated installation

The easiest way to install Rally is by executing its installation script [https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh]

wget -q -O- https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash
or using curl
curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash

The installation script will also check if all the software required
by Rally is already installed in your system; if run as root user
and some dependency is missing it will ask you if you want to install
the required packages.

By default it will install Rally in a virtualenv in ~/rally when
run as standard user, or install system wide when run as root. You can
install Rally in a venv by using the option --target:

./install_rally.sh --target /foo/bar

You can also install Rally system wide by running script as root and
without --target option:

sudo ./install_rally.sh

Run ./install_rally.sh with option --help to have a list of all
available options:

 $./install_rally.sh --help
 Usage: install_rally.sh [options]

 This script will install rally either in the system (as root) or in a virtual environment.

Options:
 -h, --help Print this help text
 -v, --verbose Verbose mode
 -s, --system Instead of creating a virtualenv, install as
 system package.
 -d, --target DIRECTORY Install Rally virtual environment into DIRECTORY.
 (Default: $HOME/rally).
 -f, --overwrite Remove target directory if it already exists.
 -y, --yes Do not ask for confirmation: assume a 'yes' reply
 to every question.
 -D, --dbtype TYPE Select the database type. TYPE can be one of
 'sqlite', 'mysql', 'postgres'.
 Default: sqlite
 --db-user USER Database user to use. Only used when --dbtype
 is either 'mysql' or 'postgres'.
 --db-password PASSWORD Password of the database user. Only used when
 --dbtype is either 'mysql' or 'postgres'.
 --db-host HOST Database host. Only used when --dbtype is
 either 'mysql' or 'postgres'
 --db-name NAME Name of the database. Only used when --dbtype is
 either 'mysql' or 'postgres'
 -p, --python EXE The python interpreter to use. Default: /usr/bin/python.

Notes: the script will check if all the software required by Rally
is already installed in your system. If this is not the case, it will
exit, suggesting you the command to issue as root in order to
install the dependencies.

You also have to set up the Rally database after the installation is
complete:

rally-manage db recreate

Rally with DevStack all-in-one installation

It is also possible to install Rally with DevStack. First, clone the
corresponding repositories:

git clone https://git.openstack.org/openstack-dev/devstack
git clone https://github.com/openstack/rally

Then, configure DevStack to run Rally. First, create your local.conf file:

cd devstack
cp samples/local.conf local.conf

Next, edit local.conf: add the following line to the [[local|localrc]]
section.

enable_plugin rally https://github.com/openstack/rally master

Finally, run DevStack as usually:

./stack.sh

Rally & Docker

First you need to install Docker; Docker supplies installation
instructions for various OSes [https://docs.docker.com/installation/].

You can either use the official Rally Docker image, or build your own
from the Rally source. To do that, change directory to the root directory of
the Rally git repository and run:

docker build -t myrally .

If you build your own Docker image, substitute myrally for
rallyforge/rally in the commands below.

The Rally Docker image is configured to store local settings and the
database in the user's home directory. For persistence of these data,
you may want to keep this directory outside of the container. This may
be done via the following steps:

sudo mkdir /var/lib/rally_container
sudo chown 65500 /var/lib/rally_container
docker run -it -v /var/lib/rally_container:/home/rally rallyforge/rally

Note

In order for the volume to be accessible by the Rally user
(uid: 65500) inside the container, it must be accessible by UID
65500 outside the container as well, which is why it is created
in /var/lib/rally. Creating it in your home directory is only
likely to work if your home directory has excessively open
permissions (e.g., 0755), which is not recommended.

You can find all task samples, docs and certification tasks at /opt/rally/.
Also you may want to save the last command as an alias:

echo 'alias dock_rally="docker run -it -v /var/lib/rally_container:/home/rally rallyforge/rally"' >> ~/.bashrc

After executing dock_rally, or docker run ..., you will have
bash running inside the container with Rally installed. You may do
anything with Rally, but you need to create the database first:

user@box:~/rally$ dock_rally
rally@1cc98e0b5941:~$ rally-manage db recreate
rally@1cc98e0b5941:~$ rally deployment list
There are no deployments. To create a new deployment, use:
rally deployment create
rally@1cc98e0b5941:~$

In case you have SELinux enabled and Rally fails to create the
database, try executing the following commands to put SELinux into
Permissive Mode on the host machine

sed -i 's/SELINUX=enforcing/SELINUX=permissive/' /etc/selinux/config
setenforce permissive

Rally currently has no SELinux policy, which is why it must be run in
Permissive mode for certain configurations. If you can help create an
SELinux policy for Rally, please contribute!

More about docker: https://www.docker.com/

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Installation and upgrades

Database upgrade in Rally

Information for users

Rally supports DB schema versioning (schema versions are called revisions)
and migration (upgrade to the latest revision).

End user is provided with the following possibilities:

	Print current revision of DB.

rally-manage db revision

	Upgrade existing DB to the latest state.

This is needed when previously existing Rally installation is being
upgraded to a newer version. In this case user should issue command

rally-manage db upgrade

AFTER upgrading Rally package. DB schema
will get upgraded to the latest state and all existing data will be kept.

WARNING Rally does NOT support DB schema downgrade. One should consider
backing up existing database in order to be able to rollback the change.

Information for developers

DB migration in Rally is implemented via package alembic.

It is highly recommended to get familiar with it's documentation
available by the link [https://alembic.readthedocs.org] before proceeding.

If developer is about to change existing DB schema they should
create new DB revision and migration script with the following command

alembic --config rally/common/db/sqlalchemy/alembic.ini revision -m <Message>

or

alembic --config rally/common/db/sqlalchemy/alembic.ini revision --autogenerate -m <Message>

It will generate migration script -- a file named <UUID>_<Message>.py
located in rally/common/db/sqlalchemy/migrations/versions.

Alembic with parameter --autogenerate makes some "routine" job for
developer, for example it makes some SQLite compatible batch expressions for
migrations.

Generated script should then be checked, edited if it is needed to be
and added to Rally source tree.

WARNING Even though alembic supports schema downgrade, migration
scripts provided along with Rally do not contain actual code for
downgrade.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Quick start

This section will guide you through all steps of using Rally - from
installation to its advanced usage in different use cases (including running
Rally in OpenStack CI system gates to control merges of patches submitted for
review on Gerrit code review system).

	Rally step-by-step
	Step 0. Installation

	Step 1. Setting up the environment and running a benchmark from samples

	Step 2. Rally input task format

	Step 3. Benchmarking OpenStack with existing users

	Step 4. Adding success criteria (SLA) for benchmarks

	Step 5. Rally task templates

	Step 6. Aborting load generation on success criteria failure

	Step 7. Working with multiple OpenStack clouds

	Step 8. Discovering more plugins in Rally

	Step 9. Deploying OpenStack from Rally

	Step 10. Verifying cloud via Tempest verifier

	Rally OpenStack Gates
	Gate jobs

	Create a custom Rally Gate job

	Example: Rally Gate job for Glance

	Plugins & Extras in Rally Gate jobs

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

Rally step-by-step

In the following tutorial, we will guide you step-by-step through different use
cases that might occur in Rally, starting with the easy ones and moving towards
more complicated cases.

	Step 0. Installation

	Step 1. Setting up the environment and running a benchmark from samples

	Step 2. Rally input task format

	Step 3. Benchmarking OpenStack with existing users

	Step 4. Adding success criteria (SLA) for benchmarks

	Step 5. Rally task templates

	Step 6. Aborting load generation on success criteria failure

	Step 7. Working with multiple OpenStack clouds

	Step 8. Discovering more plugins in Rally

	Step 9. Deploying OpenStack from Rally

	Step 10. Verifying cloud via Tempest verifier

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 0. Installation

The easiest way to install Rally is by running its installation script [https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh]:

wget -q -O- https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash
or using curl:
curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash

If you execute the script as regular user, Rally will create a new
virtual environment in ~/rally/ and install in it Rally, and will
use sqlite as database backend. If you execute the script as root,
Rally will be installed system wide. For more installation options,
please refer to the installation page.

Note: Rally requires Python version 2.7 or 3.4.

Now that you have Rally installed, you are ready to start
benchmarking OpenStack with it!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 1. Setting up the environment and running a benchmark from samples

	Registering an OpenStack deployment in Rally

	Benchmarking

	Report generation

In this demo, we will show how to perform some basic operations in Rally, such
as registering an OpenStack cloud, benchmarking it and generating benchmark
reports.

We assume that you have gone through Step 0. Installation and
have an already existing OpenStack deployment with Keystone available at
<KEYSTONE_AUTH_URL>.

Registering an OpenStack deployment in Rally

First, you have to provide Rally with an OpenStack deployment it is going to
benchmark. This should be done either through OpenRC files [http://docs.openstack.org/user-guide/content/cli_openrc.html] or through
deployment configuration files [https://github.com/openstack/rally/tree/master/samples/deployments]. In case you already have an OpenRC, it is
extremely simple to register a deployment with the deployment create command:

$. openrc admin admin
$ rally deployment create --fromenv --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | existing | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

Alternatively, you can put the information about your cloud credentials into a
JSON configuration file (let's call it existing.json [https://github.com/openstack/rally/blob/master/samples/deployments/existing.json]). The deployment
create command has a slightly different syntax in this case:

$ rally deployment create --file=existing.json --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | existing | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

Note the last line in the output. It says that the just created deployment is
now used by Rally; that means that all the benchmarking operations from now on
are going to be performed on this deployment. Later we will show how to switch
between different deployments.

Finally, the deployment check command enables you to verify that your current
deployment is healthy and ready to be benchmarked:

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Benchmarking

Now that we have a working and registered deployment, we can start benchmarking
it. The sequence of benchmarks to be launched by Rally should be specified in a
benchmark task configuration file (either in JSON or in YAML format).
Let's try one of the sample benchmark tasks available in
samples/tasks/scenarios [https://github.com/openstack/rally/tree/master/samples/tasks/scenarios], say, the one that boots and deletes multiple
servers (samples/tasks/scenarios/nova/boot-and-delete.json):

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 }
 }
]
}

To start a benchmark task, run the task start command (you can also add the
-v option to print more logging information):

$ rally task start samples/tasks/scenarios/nova/boot-and-delete.json
--
 Preparing input task
--

Input task is:
<Your task config here>

--
 Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: started
--

Benchmarking... This can take a while...

To track task status use:

 rally task status
 or
 rally task detailed

--
 Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: finished
--

test scenario NovaServers.boot_and_delete_server
args position 0
args values:
{u'args': {u'flavor': {u'name': u'm1.tiny'},
 u'force_delete': False,
 u'image': {u'name': u'^cirros.*uec$'}},
 u'context': {u'users': {u'project_domain': u'default',
 u'resource_management_workers': 30,
 u'tenants': 3,
 u'user_domain': u'default',
 u'users_per_tenant': 2}},
 u'runner': {u'concurrency': 2, u'times': 10, u'type': u'constant'}}
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.99	9.047	11.862	9.747	10.805	100.0%	10
nova.delete_server	4.427	4.574	4.772	4.677	4.725	100.0%	10
total	12.556	13.621	16.37	14.252	15.311	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 70.1310448647
Full duration: 87.545541048

HINTS:
* To plot HTML graphics with this data, run:
 rally task report 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996 --out output.html

* To get raw JSON output of task results, run:
 rally task results 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Using task: 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Note that the Rally input task above uses regular expressions to specify the
image and flavor name to be used for server creation, since concrete names
might differ from installation to installation. If this benchmark task fails,
then the reason for that might a non-existing image/flavor specified in the
task. To check what images/flavors are available in the deployment you are
currently benchmarking, you might use the rally show command:

$ rally show images
+--------------------------------------+-----------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+-----------------------+-----------+
| 8dfd6098-0c26-4cb5-8e77-1ecb2db0b8ae | CentOS 6.5 (x86_64) | 344457216 |
| 2b8d119e-9461-48fc-885b-1477abe2edc5 | CirrOS 0.3.4 (x86_64) | 13287936 |
+--------------------------------------+-----------------------+-----------+

$ rally show flavors

Flavors for user `admin` in tenant `admin`:
+----+-----------+-------+----------+-----------+-----------+
| ID | Name | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
+----+-----------+-------+----------+-----------+-----------+
1	m1.tiny	1	512		1
2	m1.small	1	2048		20
3	m1.medium	2	4096		40
4	m1.large	4	8192		80
5	m1.xlarge	8	16384		160
+----+-----------+-------+----------+-----------+-----------+

Report generation

One of the most beautiful things in Rally is its task report generation
mechanism. It enables you to create illustrative and comprehensive HTML reports
based on the benchmarking data. To create and open at once such a report for
the last task you have launched, call:

rally task report --out=report1.html --open

This will produce an HTML page with the overview of all the scenarios that
you've included into the last benchmark task completed in Rally (in our case,
this is just one scenario, and we will cover the topic of multiple scenarios in
one task in
the next step of our tutorial):

[image: ../../_images/Report-Overview.png]
This aggregating table shows the duration of the load produced by the
corresponding scenario ("Load duration"), the overall benchmark scenario
execution time, including the duration of environment preparation with contexts
("Full duration"), the number of iterations of each scenario
("Iterations"), the type of the load used while running the scenario
("Runner"), the number of failed iterations ("Errors") and finally whether
the scenario has passed certain Success Criteria ("SLA") that were set up by
the user in the input configuration file (we will cover these criteria in
one of the next steps).

By navigating in the left panel, you can switch to the detailed view of the
benchmark results for the only scenario we included into our task, namely
NovaServers.boot_and_delete_server:

[image: ../../_images/Report-Scenario-Overview.png]
This page, along with the description of the success criteria used to check the
outcome of this scenario, shows more detailed information and statistics about
the duration of its iterations. Now, the "Total durations" table splits the
duration of our scenario into the so-called "atomic actions": in our case,
the "boot_and_delete_server" scenario consists of two actions -
"boot_server" and "delete_server". You can also see how the scenario
duration changed throughout its iterations in the "Charts for the total
duration" section. Similar charts, but with atomic actions detailed are on the
"Details" tab of this page:

[image: ../../_images/Report-Scenario-Atomic.png]
Note that all the charts on the report pages are very dynamic: you can change
their contents by clicking the switches above the graph and see more
information about its single points by hovering the cursor over these points.

Take some time to play around with these graphs
and then move on to the next step of our tutorial.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 2. Rally input task format

	Basic input task syntax

	Multiple benchmarks in a single task

	Multiple configurations of the same scenario

Basic input task syntax

Rally comes with a really great collection of
plugins and in most
real-world cases you will use multiple plugins to test your OpenStack cloud.
Rally makes it very easy to run different test cases defined in a single
task. To do so, use the following syntax:

{
 "<ScenarioName1>": [<benchmark_config>, <benchmark_config2>, ...]
 "<ScenarioName2>": [<benchmark_config>, ...]
}

where <benchmark_config>, as before, is a dictionary:

{
 "args": { <scenario-specific arguments> },
 "runner": { <type of the runner and its specific parameters> },
 "context": { <contexts needed for this scenario> },
 "sla": { <different SLA configs> }
}

Multiple benchmarks in a single task

As an example, let's edit our configuration file from
step 1
so that it prescribes Rally to launch not only the
NovaServers.boot_and_delete_server scenario, but also the
KeystoneBasic.create_delete_user scenario. All we have to do is to append
the configuration of the second scenario as yet another top-level key of our
JSON file:

multiple-scenarios.json

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 }
 }
],
 "KeystoneBasic.create_delete_user": [
 {
 "args": {},
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 3
 }
 }
]
}

Now you can start this benchmark task as usually:

$ rally task start multiple-scenarios.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.06	11.354	18.594	18.54	18.567	100.0%	10
nova.delete_server	4.364	5.054	6.837	6.805	6.821	100.0%	10
total	12.572	16.408	25.396	25.374	25.385	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 84.1959171295
Full duration: 102.033041
--

...

+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
keystone.create_user	0.676	0.875	1.03	1.02	1.025	100.0%	10
keystone.delete_user	0.407	0.647	0.84	0.739	0.79	100.0%	10
total	1.082	1.522	1.757	1.724	1.741	100.0%	10
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 5.72119688988
Full duration: 10.0808410645

...

Note that the HTML reports you can generate by typing rally task report
--out=report_name.html after your benchmark task has completed will get
richer as your benchmark task configuration file includes more benchmark
scenarios. Let's take a look at the report overview page for a task that covers
all the scenarios available in Rally:

rally task report --out=report_multiple_scenarios.html --open

[image: ../../_images/Report-Multiple-Overview.png]

Multiple configurations of the same scenario

Yet another thing you can do in Rally is to launch the same benchmark
scenario multiple times with different configurations. That's why our
configuration file stores a list for the key
"NovaServers.boot_and_delete_server": you can just append a different
configuration of this benchmark scenario to this list to get it. Let's say,
you want to run the boot_and_delete_server scenario twice: first using the
"m1.tiny" flavor and then using the "m1.small" flavor:

multiple-configurations.json

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {...},
 "context": {...}
 },
 {
 "args": {
 "flavor": {
 "name": "m1.small"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {...},
 "context": {...}
 }
]
}

That's it! You will get again the results for each configuration separately:

$ rally task start --task=multiple-configurations.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.896	9.433	13.14	11.329	12.234	100.0%	10
nova.delete_server	4.435	4.898	6.975	5.144	6.059	100.0%	10
total	12.404	14.331	17.979	16.72	17.349	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 73.2339417934
Full duration: 91.1692159176
--

...

+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.207	8.91	9.823	9.692	9.758	100.0%	10
nova.delete_server	4.405	4.767	6.477	4.904	5.691	100.0%	10
total	12.735	13.677	16.301	14.596	15.449	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 71.029528141
Full duration: 88.0259010792
...

The HTML report will also look similar to what we have seen before:

rally task report --out=report_multiple_configuraions.html --open

[image: ../../_images/Report-Multiple-Configurations-Overview.png]

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 3. Benchmarking OpenStack with existing users

	Motivation

	Registering existing users in Rally

	Running benchmark scenarios with existing users

Motivation

There are two very important reasons from the production world of why it is
preferable to use some already existing users to benchmark your OpenStack
cloud:

1. Read-only Keystone Backends: creating temporary users for benchmark
scenarios in Rally is just impossible in case of r/o Keystone backends like
LDAP and AD.

2. Safety: Rally can be run from an isolated group of users, and if something
goes wrong, this won’t affect the rest of the cloud users.

Registering existing users in Rally

The information about existing users in your OpenStack cloud should be passed
to Rally at the
deployment initialization step.
You have to use the ExistingCloud deployment plugin that just provides
Rally with credentials of an already existing cloud. The difference from the
deployment configuration we've seen previously is that you should set up the
"users" section with the credentials of already existing users. Let's call
this deployment configuration file existing_users.json:

{
 "type": "ExistingCloud",
 "auth_url": "http://example.net:5000/v2.0/",
 "region_name": "RegionOne",
 "endpoint_type": "public",
 "admin": {
 "username": "admin",
 "password": "pa55word",
 "tenant_name": "demo"
 },
 "users": [
 {
 "username": "b1",
 "password": "1234",
 "tenant_name": "testing"
 },
 {
 "username": "b2",
 "password": "1234",
 "tenant_name": "testing"
 }
]
}

This deployment configuration requires some basic information about the
OpenStack cloud like the region name, auth url. admin user credentials, and any
amount of users already existing in the system. Rally will use their
credentials to generate load in against this deployment as soon as we register
it as usual:

$ rally deployment create --file existings_users --name our_cloud
+--------------------------------------+----------------------------+-----------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+-----------+------------------+--------+
| 1849a9bf-4b18-4fd5-89f0-ddcc56eae4c9 | 2015-03-28 02:43:27.759702 | our_cloud | deploy->finished | |
+--------------------------------------+----------------------------+-----------+------------------+--------+
Using deployment: 1849a9bf-4b18-4fd5-89f0-ddcc56eae4c9
~/.rally/openrc was updated

After that, the rally show command lists the resources for each user
separately:

$ rally show images

Images for user `admin` in tenant `admin`:
+--------------------------------------+---------------------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+---------------------------------+-----------+
041cfd70-0e90-4ed6-8c0c-ad9c12a94191	cirros-0.3.4-x86_64-uec	25165824
87710f09-3625-4496-9d18-e20e34906b72	Fedora-x86_64-20-20140618-sda	209649664
b0f269be-4859-48e0-a0ca-03fb80d14602	cirros-0.3.4-x86_64-uec-ramdisk	3740163
d82eaf7a-ff63-4826-9aa7-5fa105610e01	cirros-0.3.4-x86_64-uec-kernel	4979632
+--------------------------------------+---------------------------------+-----------+

Images for user `b1` in tenant `testing`:
+--------------------------------------+---------------------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+---------------------------------+-----------+
041cfd70-0e90-4ed6-8c0c-ad9c12a94191	cirros-0.3.4-x86_64-uec	25165824
87710f09-3625-4496-9d18-e20e34906b72	Fedora-x86_64-20-20140618-sda	209649664
b0f269be-4859-48e0-a0ca-03fb80d14602	cirros-0.3.4-x86_64-uec-ramdisk	3740163
d82eaf7a-ff63-4826-9aa7-5fa105610e01	cirros-0.3.4-x86_64-uec-kernel	4979632
+--------------------------------------+---------------------------------+-----------+

Images for user `b2` in tenant `testing`:
+--------------------------------------+---------------------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+---------------------------------+-----------+
041cfd70-0e90-4ed6-8c0c-ad9c12a94191	cirros-0.3.4-x86_64-uec	25165824
87710f09-3625-4496-9d18-e20e34906b72	Fedora-x86_64-20-20140618-sda	209649664
b0f269be-4859-48e0-a0ca-03fb80d14602	cirros-0.3.4-x86_64-uec-ramdisk	3740163
d82eaf7a-ff63-4826-9aa7-5fa105610e01	cirros-0.3.4-x86_64-uec-kernel	4979632
+--------------------------------------+---------------------------------+-----------+

With this new deployment being active, Rally will use the already existing
users "b1" and "b2" instead of creating the temporary ones when launching
benchmark task that do not specify the "users" context.

Running benchmark scenarios with existing users

After you have registered a deployment with existing users, don't forget to
remove the "users" context from your benchmark task configuration if you want
to use existing users, like in the following configuration file
(boot-and-delete.json):

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {}
 }
]
}

When you start this task, it will use the existing users "b1" and "b2"
instead of creating the temporary ones:

rally task start samples/tasks/scenarios/nova/boot-and-delete.json

It goes without saying that support of benchmarking with predefined users
simplifies the usage of Rally for generating loads against production clouds.

(based on: http://boris-42.me/rally-can-generate-load-with-passed-users-now/)

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 4. Adding success criteria (SLA) for benchmarks

	SLA - Service-Level Agreement (Success Criteria)

	Checking SLA

	SLA in task report

SLA - Service-Level Agreement (Success Criteria)

Rally allows you to set success criteria (also called SLA - Service-Level
Agreement) for every benchmark. Rally will automatically check them for you.

To configure the SLA, add the "sla" section to the configuration of the
corresponding benchmark (the check name is a key associated with its target
value). You can combine different success criteria:

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 ...
 },
 "runner": {
 ...
 },
 "context": {
 ...
 },
 "sla": {
 "max_seconds_per_iteration": 10,
 "failure_rate": {
 "max": 25
 }
 }
 }
]
}

Such configuration will mark the NovaServers.boot_and_delete_server
benchmark scenario as not successful if either some iteration took more than 10
seconds or more than 25% iterations failed.

Checking SLA

Let us show you how Rally SLA work using a simple example based on Dummy
benchmark scenarios. These scenarios actually do not perform any
OpenStack-related stuff but are very useful for testing the behaviors of Rally.
Let us put in a new task, test-sla.json, 2 scenarios -- one that does nothing
and another that just throws an exception:

{
 "Dummy.dummy": [
 {
 "args": {},
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 },
 "sla": {
 "failure_rate": {"max": 0.0}
 }
 }
],
 "Dummy.dummy_exception": [
 {
 "args": {},
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 },
 "sla": {
 "failure_rate": {"max": 0.0}
 }
 }
]
}

Note that both scenarios in these tasks have the maximum failure rate of 0%
as their success criterion. We expect that the first scenario will pass
this criterion while the second will fail it. Let's start the task:

rally task start test-sla.json

After the task completes, run rally task sla_check to check the results again
the success criteria you defined in the task:

$ rally task sla_check
+-----------------------+-----+--------------+--------+---+
| benchmark | pos | criterion | status | detail |
+-----------------------+-----+--------------+--------+---+
| Dummy.dummy | 0 | failure_rate | PASS | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 0.0% |
| Dummy.dummy_exception | 0 | failure_rate | FAIL | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 100.0% |
+-----------------------+-----+--------------+--------+---+

Exactly as expected.

SLA in task report

SLA checks are nicely visualized in task reports. Generate one:

rally task report --out=report_sla.html --open

Benchmark scenarios that have passed SLA have a green check on the overview
page:

[image: ../../_images/Report-SLA-Overview.png]
Somewhat more detailed information about SLA is displayed on the scenario
pages:

[image: ../../_images/Report-SLA-Scenario.png]
Success criteria present a very useful concept that enables not only to analyze
the outcome of your benchmark tasks, but also to control their execution. In
one of the next sections
of our tutorial, we will show how to use SLA to abort the load generation
before your OpenStack goes wrong.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 5. Rally task templates

	Basic template syntax

	Using the default values

	Advanced templates

Basic template syntax

A nice feature of the input task format used in Rally is that it supports the
template syntax based on Jinja2 [https://pypi.python.org/pypi/Jinja2]. This turns out to be extremely useful
when, say, you have a fixed structure of your task but you want to parameterize
this task in some way. For example, imagine your input task file (task.yaml)
runs a set of Nova scenarios:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: "^cirros.*uec$"
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 NovaServers.resize_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: "^cirros.*uec$"
 to_flavor:
 name: "m1.small"
 runner:
 type: "constant"
 times: 3
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

In both scenarios above, the "^cirros.*uec$" image is passed to the scenario
as an argument (so that these scenarios use an appropriate image while booting
servers). Let’s say you want to run the same set of scenarios with the same
runner/context/sla, but you want to try another image while booting server to
compare the performance. The most elegant solution is then to turn the image
name into a template variable:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: {{image_name}}
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 NovaServers.resize_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: {{image_name}}
 to_flavor:
 name: "m1.small"
 runner:
 type: "constant"
 times: 3
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

and then pass the argument value for {{image_name}} when starting a task
with this configuration file. Rally provides you with different ways to do
that:

1. Pass the argument values directly in the command-line interface (with either
a JSON or YAML dictionary):

rally task start task.yaml --task-args '{"image_name": "^cirros.*uec$"}'
rally task start task.yaml --task-args 'image_name: "^cirros.*uec$"'

	Refer to a file that specifies the argument values (JSON/YAML):

rally task start task.yaml --task-args-file args.json
rally task start task.yaml --task-args-file args.yaml

where the files containing argument values should look as follows:

args.json:

{
 "image_name": "^cirros.*uec$"
}

args.yaml:

 image_name: "^cirros.*uec$"

Passed in either way, these parameter values will be substituted by Rally when
starting a task:

$ rally task start task.yaml --task-args "image_name: "^cirros.*uec$""
--
 Preparing input task
--

Input task is:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: ^cirros.*uec$
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 NovaServers.resize_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: ^cirros.*uec$
 to_flavor:
 name: "m1.small"
 runner:
 type: "constant"
 times: 3
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

--
 Task cbf7eb97-0f1d-42d3-a1f1-3cc6f45ce23f: started
--

Benchmarking... This can take a while...

Using the default values

Note that the Jinja2 template syntax allows you to set the default values
for your parameters. With default values set, your task file will work even if
you don't parameterize it explicitly while starting a task. The default values
should be set using the {% set ... %} clause (task.yaml):

{% set image_name = image_name or "^cirros.*uec$" %}

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: {{image_name}}
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 ...

If you don't pass the value for {{image_name}} while starting a task, the
default one will be used:

$ rally task start task.yaml
--
 Preparing input task
--

Input task is:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: ^cirros.*uec$
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 ...

Advanced templates

Rally makes it possible to use all the power of Jinja2 template syntax,
including the mechanism of built-in functions. This enables you to
construct elegant task files capable of generating complex load on your cloud.

As an example, let us make up a task file that will create new users with
increasing concurrency. The input task file (task.yaml) below uses the
Jinja2 for-endfor construct to accomplish that:

 KeystoneBasic.create_user:
 {% for i in range(2, 11, 2) %}
 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: {{i}}
 sla:
 failure_rate:
 max: 0
 {% endfor %}

In this case, you don’t need to pass any arguments via
--task-args/--task-args-file, but as soon as you start this task, Rally will
automatically unfold the for-loop for you:

$ rally task start task.yaml
--
 Preparing input task
--

Input task is:

 KeystoneBasic.create_user:

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 2
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 4
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 6
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 8
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 10
 sla:
 failure_rate:
 max: 0

--
 Task ea7e97e3-dd98-4a81-868a-5bb5b42b8610: started
--

Benchmarking... This can take a while...

As you can see, the Rally task template syntax is a simple but powerful
mechanism that not only enables you to write elegant task configurations, but
also makes them more readable for other people. When used appropriately, it can
really improve the understanding of your benchmarking procedures in Rally when
shared with others.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 6. Aborting load generation on success criteria failure

Benchmarking pre-production and production OpenStack clouds is not a trivial
task. From the one side it is important to reach the OpenStack cloud's limits,
from the other side the cloud shouldn't be damaged. Rally aims to make this
task as simple as possible. Since the very beginning Rally was able to generate
enough load for any OpenStack cloud. Generating too big a load was the major
issue for production clouds, because Rally didn't know how to stop the load
until it was too late.

With the "stop on SLA failure" feature, however, things are much better.

This feature can be easily tested in real life by running one of the most
important and plain benchmark scenario called "Authenticate.keystone". This
scenario just tries to authenticate from users that were pre-created by Rally.
Rally input task looks as follows (auth.yaml):

 Authenticate.keystone:
 -
 runner:
 type: "rps"
 times: 6000
 rps: 50
 context:
 users:
 tenants: 5
 users_per_tenant: 10
 sla:
 max_avg_duration: 5

In human-readable form this input task means: Create 5 tenants with 10 users
in each, after that try to authenticate to Keystone 6000 times performing 50
authentications per second (running new authentication request every 20ms).
Each time we are performing authentication from one of the Rally pre-created
user. This task passes only if max average duration of authentication takes
less than 5 seconds.

Note that this test is quite dangerous because it can DDoS Keystone. We are
running more and more simultaneously authentication requests and things may go
wrong if something is not set properly (like on my DevStack deployment in Small
VM on my laptop).

Let’s run Rally task with an argument that prescribes Rally to stop load on
SLA failure:

$ rally task start --abort-on-sla-failure auth.yaml

....
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| total | 0.108 | 8.58 | 65.97 | 19.782 | 26.125 | 100.0% | 2495 |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+

On the resulting table there are 2 interesting things:

	Average duration was 8.58 sec which is more than 5 seconds

	Rally performed only 2495 (instead of 6000) authentication requests

To understand better what has happened let’s generate HTML report:

rally task report --out auth_report.html

[image: ../../_images/Report-Abort-on-SLA-task-1.png]
On the chart with durations we can observe that the duration of authentication
request reaches 65 seconds at the end of the load generation. Rally stopped
load at the very last moment just before bad things happened. The reason why it
runs so many attempts to authenticate is because of not enough good success
criteria. We had to run a lot of iterations to make average duration bigger
than 5 seconds. Let’s chose better success criteria for this task and run it
one more time.

 Authenticate.keystone:
 -
 runner:
 type: "rps"
 times: 6000
 rps: 50
 context:
 users:
 tenants: 5
 users_per_tenant: 10
 sla:
 max_avg_duration: 5
 max_seconds_per_iteration: 10
 failure_rate:
 max: 0

Now our task is going to be successful if the following three conditions hold:

	maximum average duration of authentication should be less than 5 seconds

	maximum duration of any authentication should be less than 10 seconds

	no failed authentication should appear

Let’s run it!

$ rally task start --abort-on-sla-failure auth.yaml

...
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| total | 0.082 | 5.411 | 22.081 | 10.848 | 14.595 | 100.0% | 1410 |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+

[image: ../../_images/Report-Abort-on-SLA-task-2.png]
This time load stopped after 1410 iterations versus 2495 which is much better.
The interesting thing on this chart is that first occurrence of "> 10 second"
authentication happened on 950 iteration. The reasonable question: "Why does
Rally run 500 more authentication requests then?". This appears from the math:
During the execution of bad authentication (10 seconds) Rally performed
about 50 request/sec * 10 sec = 500 new requests as a result we run 1400
iterations instead of 950.

(based on: http://boris-42.me/rally-tricks-stop-load-before-your-openstack-goes-wrong/)

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 7. Working with multiple OpenStack clouds

Rally is an awesome tool that allows you to work with multiple clouds and can
itself deploy them. We already know how to work with
a single cloud.
Let us now register 2 clouds in Rally: the one that we have access to and the
other that we know is registered with wrong credentials.

$. openrc admin admin # openrc with correct credentials
$ rally deployment create --fromenv --name=cloud-1
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-18 00:11:14.757203 | cloud-1 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 4251b491-73b2-422a-aecb-695a94165b5e
~/.rally/openrc was updated
...

$. bad_openrc admin admin # openrc with wrong credentials
$ rally deployment create --fromenv --name=cloud-2
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-18 00:38:26.127171 | cloud-2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

Let us now list the deployments we have created:

$ rally deployment list
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-05 00:11:14.757203 | cloud-1 | deploy->finished | |
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-05 00:40:58.451435 | cloud-2 | deploy->finished | * |
+--------------------------------------+----------------------------+------------+------------------+--------+

Note that the second is marked as "active" because this is the deployment
we have created most recently. This means that it will be automatically (unless
its UUID or name is passed explicitly via the --deployment parameter) used by
the commands that need a deployment, like rally task start ... or rally
deployment check:

$ rally deployment check
Authentication Issues: wrong keystone credentials specified in your endpoint properties. (HTTP 401).

$ rally deployment check --deployment=cloud-1
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

You can also switch the active deployment using the rally deployment use
command:

$ rally deployment use cloud-1
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Note the first two lines of the CLI output for the rally deployment use
command. They tell you the UUID of the new active deployment and also say that
the ~/.rally/openrc file was updated -- this is the place where the "active"
UUID is actually stored by Rally.

One last detail about managing different deployments in Rally is that the
rally task list command outputs only those tasks that were run against the
currently active deployment, and you have to provide the --all-deployments
parameter to list all the tasks:

$ rally task list
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| c21a6ecb-57b2-43d6-bbbb-d7a827f1b420 | cloud-1 | 2015-01-05 01:00:42.099596 | 0:00:13.419226 | finished | False | |
| f6dad6ab-1a6d-450d-8981-f77062c6ef4f | cloud-1 | 2015-01-05 01:05:57.653253 | 0:00:14.160493 | finished | False | |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
$ rally task list --all-deployment
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
c21a6ecb-57b2-43d6-bbbb-d7a827f1b420	cloud-1	2015-01-05 01:00:42.099596	0:00:13.419226	finished	False	
f6dad6ab-1a6d-450d-8981-f77062c6ef4f	cloud-1	2015-01-05 01:05:57.653253	0:00:14.160493	finished	False	
6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996	cloud-2	2015-01-05 01:14:51.428958	0:00:15.042265	finished	False	
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 8. Discovering more plugins in Rally

	Plugins in the Rally repository

	CLI: rally plugin show

	CLI: rally plugin list

Plugins in the Rally repository

Rally currently comes with a great collection of plugins that use the API of
different OpenStack projects like Keystone, Nova, Cinder,
Glance and so on. The good news is that you can combine multiple plugins
in one task to test your cloud in a comprehensive way.

First, let's see what plugins are available in Rally. One of the ways to
discover these plugins is just to inspect their source code [https://github.com/openstack/rally/tree/master/rally/plugins/].
another is to use build-in rally plugin command.

CLI: rally plugin show

Rally plugin CLI command is much more convenient way to learn about different
plugins in Rally. This command allows to list plugins and show detailed
information about them:

$ rally plugin show create_meter_and_get_stats

NAME
 CeilometerStats.create_meter_and_get_stats
NAMESPACE
 default
MODULE
 rally.plugins.openstack.scenarios.ceilometer.stats
DESCRIPTION
 Meter is first created and then statistics is fetched for the same
 using GET /v2/meters/(meter_name)/statistics.
PARAMETERS
+--------+--+
| name | description |
+--------+--+
| kwargs | contains optional arguments to create a meter |
| | |
+--------+--+

In case if multiple found benchmarks found command list all matches elements:

$ rally plugin show NovaKeypair

Multiple plugins found:
+---+-----------+---+
| name | namespace | title |
+---+-----------+---+
NovaKeypair.boot_and_delete_server_with_keypair	default	Boot and delete server with keypair.
NovaKeypair.create_and_delete_keypair	default	Create a keypair with random name and delete keypair.
NovaKeypair.create_and_list_keypairs	default	Create a keypair with random name and list keypairs.
+---+-----------+---+

CLI: rally plugin list

This command can be used to list filtered by name list of plugins.

$ rally plugin list --name Keystone

+--+-----------+---+
| name | namespace | title |
+--+-----------+---+
Authenticate.keystone	default	Check Keystone Client.
KeystoneBasic.add_and_remove_user_role	default	Create a user role add to a user and disassociate.
KeystoneBasic.create_add_and_list_user_roles	default	Create user role, add it and list user roles for given user.
KeystoneBasic.create_and_delete_ec2credential	default	Create and delete keystone ec2-credential.
KeystoneBasic.create_and_delete_role	default	Create a user role and delete it.
KeystoneBasic.create_and_delete_service	default	Create and delete service.
KeystoneBasic.create_and_list_ec2credentials	default	Create and List all keystone ec2-credentials.
KeystoneBasic.create_and_list_services	default	Create and list services.
KeystoneBasic.create_and_list_tenants	default	Create a keystone tenant with random name and list all tenants.
KeystoneBasic.create_and_list_users	default	Create a keystone user with random name and list all users.
KeystoneBasic.create_delete_user	default	Create a keystone user with random name and then delete it.
KeystoneBasic.create_tenant	default	Create a keystone tenant with random name.
KeystoneBasic.create_tenant_with_users	default	Create a keystone tenant and several users belonging to it.
KeystoneBasic.create_update_and_delete_tenant	default	Create, update and delete tenant.
KeystoneBasic.create_user	default	Create a keystone user with random name.
KeystoneBasic.create_user_set_enabled_and_delete	default	Create a keystone user, enable or disable it, and delete it.
KeystoneBasic.create_user_update_password	default	Create user and update password for that user.
KeystoneBasic.get_entities	default	Get instance of a tenant, user, role and service by id's.
+--+-----------+---+

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 9. Deploying OpenStack from Rally

Along with supporting already existing OpenStack deployments, Rally itself can
deploy OpenStack automatically by using one of its deployment engines.
Take a look at other deployment configuration file samples [https://github.com/openstack/rally/tree/master/samples/deployments]. For example,
devstack-in-existing-servers.json is a deployment configuration file that
tells Rally to deploy OpenStack with Devstack on the existing servers with
given credentials:

{
 "type": "DevstackEngine",
 "provider": {
 "type": "ExistingServers",
 "credentials": [{"user": "root", "host": "10.2.0.8"}]
 }
}

You can try to deploy OpenStack in your Virtual Machine using this script. Edit
the configuration file with your IP address/user name and run, as usual:

$ rally deployment create --file=samples/deployments/for_deploying_openstack_with_rally/devstack-in-existing-servers.json --name=new-devstack
+---------------------------+----------------------------+--------------+------------------+
| uuid | created_at | name | status |
+---------------------------+----------------------------+--------------+------------------+
| <Deployment UUID> | 2015-01-10 22:00:28.270941 | new-devstack | deploy->finished |
+---------------------------+----------------------------+--------------+------------------+
Using deployment : <Deployment UUID>

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

 	Rally step-by-step

Step 10. Verifying cloud via Tempest verifier

	Create/delete Tempest verifier

	Configure Tempest verifier

	Start a verification

As you may know, Rally has a verification component (aka 'rally verify').
Earlier the purpose of this component was to simplify work with
Tempest [https://github.com/openstack/tempest] framework (The OpenStack
Integration Test Suite). Rally provided a quite simple interface to install and
configure Tempest, run tests and build a report with results. But now the
verification component allows us to simplify work not only with Tempest but
also with any test frameworks or tools. All you need is to create a plugin for
your framework or tool, and you will be able to use 'rally verify'
interface for it. At this point, Rally supports only one plugin in the
verification component out of the box - as you might guess, Tempest plugin. In
this guide, we will show how to use Tempest and Rally together via the updated
'rally verify' interface. We assume that you already have a
Rally installation and have already
registered an OpenStack deployment
in Rally. So, let's get started!

Create/delete Tempest verifier

Execute the following command to create a Tempest verifier:

$ rally verify create-verifier --type tempest --name tempest-verifier
2017-01-18 14:43:20.807 5125 INFO rally.api [-] Creating verifier 'tempest-verifier'.
2017-01-18 14:43:21.203 5125 INFO rally.verification.manager [-] Cloning verifier repo from https://git.openstack.org/openstack/tempest.
2017-01-18 14:43:32.458 5125 INFO rally.verification.manager [-] Creating virtual environment. It may take a few minutes.
2017-01-18 14:43:49.786 5125 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=cde1b03d-d1eb-47f2-a997-3fd21b1d8810) has been successfully created!
Using verifier 'tempest-verifier' (UUID=cde1b03d-d1eb-47f2-a997-3fd21b1d8810) as the default verifier for the future operations.

The command clones Tempest from the
https://git.openstack.org/openstack/tempest repository and installs it in
a Python virtual environment for the current deployment by default. All
information about the created verifier is stored in a database. It allows us to
set up different Tempest versions and easily switch between them. How to do it
will be described bellow. You can list all installed verifiers via the
rally verify list-verifiers command.

The arguments below allow us to override the default behavior.

Use the --source argument to specify an alternate git repository location.
The path to a local Tempest repository or a URL of a remote repository are
both valid values.

$ rally verify create-verifier --type tempest --name tempest-verifier --source /home/ubuntu/tempest/
2017-01-18 14:53:19.958 5760 INFO rally.api [-] Creating verifier 'tempest-verifier'.
2017-01-18 14:53:20.166 5760 INFO rally.verification.manager [-] Cloning verifier repo from /home/ubuntu/tempest/.
2017-01-18 14:53:20.299 5760 INFO rally.verification.manager [-] Creating virtual environment. It may take a few minutes.
2017-01-18 14:53:32.517 5760 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=3f878030-1edf-455c-ae5e-07836e3d7e35) has been successfully created!
Using verifier 'tempest-verifier' (UUID=3f878030-1edf-455c-ae5e-07836e3d7e35) as the default verifier for the future operations.

$ rally verify create-verifier --type tempest --name tempest-verifier --source https://github.com/openstack/tempest.git
2017-01-18 14:54:57.786 5907 INFO rally.api [-] Creating verifier 'tempest-verifier'.
2017-01-18 14:54:57.990 5907 INFO rally.verification.manager [-] Cloning verifier repo from https://github.com/openstack/tempest.git.
2017-01-18 14:55:05.729 5907 INFO rally.verification.manager [-] Creating virtual environment. It may take a few minutes.
2017-01-18 14:55:22.943 5907 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=e84a947c-b9d3-434b-853b-176a597902e5) has been successfully created!
Using verifier 'tempest-verifier' (UUID=e84a947c-b9d3-434b-853b-176a597902e5) as the default verifier for the future operations.

Use the --version argument to specify a Tempest commit ID or tag.

$ rally verify create-verifier --type tempest --name tempest-verifier --version 198e5b4b871c3d09c20afb56dca9637a8cf86ac8
2017-01-18 14:57:02.274 6068 INFO rally.api [-] Creating verifier 'tempest-verifier'.
2017-01-18 14:57:02.461 6068 INFO rally.verification.manager [-] Cloning verifier repo from https://git.openstack.org/openstack/tempest.
2017-01-18 14:57:15.356 6068 INFO rally.verification.manager [-] Switching verifier repo to the '198e5b4b871c3d09c20afb56dca9637a8cf86ac8' version.
2017-01-18 14:57:15.423 6068 INFO rally.verification.manager [-] Creating virtual environment. It may take a few minutes.
2017-01-18 14:57:28.004 6068 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=532d7ad2-902e-4764-aa53-335f67dadc7f) has been successfully created!
Using verifier 'tempest-verifier' (UUID=532d7ad2-902e-4764-aa53-335f67dadc7f) as the default verifier for the future operations.

$ rally verify create-verifier --type tempest --name tempest-verifier --source /home/ubuntu/tempest/ --version 13.0.0
2017-01-18 15:01:53.971 6518 INFO rally.api [-] Creating verifier 'tempest-verifier'.
2017-01-18 15:01:54.180 6518 INFO rally.verification.manager [-] Cloning verifier repo from /home/ubuntu/tempest/.
2017-01-18 15:01:54.274 6518 INFO rally.verification.manager [-] Switching verifier repo to the '13.0.0' version.
2017-01-18 15:01:54.336 6518 INFO rally.verification.manager [-] Creating virtual environment. It may take a few minutes.
2017-01-18 15:02:06.623 6518 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=96ffc4bc-4ac2-4ae9-b3c2-d6b16b871027) has been successfully created!
Using verifier 'tempest-verifier' (UUID=96ffc4bc-4ac2-4ae9-b3c2-d6b16b871027) as the default verifier for the future operations.

Use the --system-wide argument to perform system-wide Tempest installation.
In this case, the virtual environment will not be created and Tempest
requirements will not be installed. Moreover, it is assumed that requirements
are already present in the local environment. This argument is useful when
users don't have an Internet connection to install requirements, but they have
pre-installed ones in the local environment.

$ rally verify create-verifier --type tempest --name tempest-verifier --source /home/ubuntu/tempest/ --version 13.0.0 --system-wide
2017-01-18 15:22:09.198 7224 INFO rally.api [-] Creating verifier 'tempest-verifier'.
2017-01-18 15:22:09.408 7224 INFO rally.verification.manager [-] Cloning verifier repo from /home/ubuntu/tempest/.
2017-01-18 15:22:09.494 7224 INFO rally.verification.manager [-] Switching verifier repo to the '13.0.0' version.
2017-01-18 15:22:10.965 7224 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=14c94c12-633a-4522-bd3d-2508f2b9d681) has been successfully created!
Using verifier 'tempest-verifier' (UUID=14c94c12-633a-4522-bd3d-2508f2b9d681) as the default verifier for the future operations.

To delete the Tempest verifier for all deployments execute the following
command:

$ rally verify delete-verifier --id 14c94c12-633a-4522-bd3d-2508f2b9d681
2017-01-18 15:27:03.485 7474 INFO rally.api [-] Deleting verifier 'tempest-verifier' (UUID=14c94c12-633a-4522-bd3d-2508f2b9d681).
2017-01-18 15:27:03.607 7474 INFO rally.api [-] Verifier has been successfully deleted!

If you have any verifications, use the --force argument to delete the
verifier and all stored verifications.

$ rally verify delete-verifier --id ec58af86-5217-4bbd-b9e5-491df6873b82
Failed to delete verifier 'tempest-verifier' (UUID=ec58af86-5217-4bbd-b9e5-491df6873b82) because there are stored verifier verifications! Please, make sure that they are not important to you. Use 'force' flag if you would like to delete verifications as well.

$ rally verify delete-verifier --id ec58af86-5217-4bbd-b9e5-491df6873b82 --force
2017-01-18 15:49:12.840 8685 INFO rally.api [-] Deleting all verifications created by verifier 'tempest-verifier' (UUID=ec58af86-5217-4bbd-b9e5-491df6873b82).
2017-01-18 15:49:12.843 8685 INFO rally.api [-] Deleting verification (UUID=c3d1408a-a224-4d31-b38f-4caf8ce06a95).
2017-01-18 15:49:12.951 8685 INFO rally.api [-] Verification has been successfully deleted!
2017-01-18 15:49:12.961 8685 INFO rally.api [-] Deleting verification (UUID=a437537e-538b-4637-b6ab-ecb8072f0c71).
2017-01-18 15:49:13.052 8685 INFO rally.api [-] Verification has been successfully deleted!
2017-01-18 15:49:13.061 8685 INFO rally.api [-] Deleting verification (UUID=5cec0579-4b4e-46f3-aeb4-a481a7bc5663).
2017-01-18 15:49:13.152 8685 INFO rally.api [-] Verification has been successfully deleted!
2017-01-18 15:49:13.152 8685 INFO rally.api [-] Deleting verifier 'tempest-verifier' (UUID=ec58af86-5217-4bbd-b9e5-491df6873b82).
2017-01-18 15:49:13.270 8685 INFO rally.api [-] Verifier has been successfully deleted!

Use the --deployment-id argument to remove the only deployment-specific
data, for example, the config file, etc.

$ rally verify delete-verifier --deployment-id 351fdfa2-99ad-4447-ba31-22e76630df97
2017-01-18 15:30:27.793 7659 INFO rally.api [-] Deleting deployment-specific data for verifier 'tempest-verifier' (UUID=ec58af86-5217-4bbd-b9e5-491df6873b82).
2017-01-18 15:30:27.797 7659 INFO rally.api [-] Deployment-specific data has been successfully deleted!

When the --deployment-id and --force arguments are used together,
the only deployment-specific data and only verifications of the specified
deployment will be deleted.

$ rally verify delete-verifier --deployment-id 351fdfa2-99ad-4447-ba31-22e76630df97 --force
2017-01-18 15:55:02.657 9004 INFO rally.api [-] Deleting all verifications created by verifier 'tempest-verifier' (UUID=fbbd2bc0-dd92-4e1d-805c-672af7c5ec78) for deployment '351fdfa2-99ad-4447-ba31-22e76630df97'.
2017-01-18 15:55:02.661 9004 INFO rally.api [-] Deleting verification (UUID=a3d3d53c-79a6-4151-85ce-f4a7323d2f4c).
2017-01-18 15:55:02.767 9004 INFO rally.api [-] Verification has been successfully deleted!
2017-01-18 15:55:02.776 9004 INFO rally.api [-] Deleting verification (UUID=eddea799-bbc5-485c-a284-1747a30e3f1e).
2017-01-18 15:55:02.869 9004 INFO rally.api [-] Verification has been successfully deleted!
2017-01-18 15:55:02.870 9004 INFO rally.api [-] Deleting deployment-specific data for verifier 'tempest-verifier' (UUID=fbbd2bc0-dd92-4e1d-805c-672af7c5ec78).
2017-01-18 15:55:02.878 9004 INFO rally.api [-] Deployment-specific data has been successfully deleted!

Configure Tempest verifier

Execute the following command to configure the Tempest verifier for the current
deployment:

$ rally verify configure-verifier
2017-01-18 16:00:24.495 9377 INFO rally.api [-] Configuring verifier 'tempest-verifier' (UUID=59e8bd5b-55e1-4ab8-b506-a5853c7a92e9) for deployment 'tempest' (UUID=4a62f373-9ce7-47a3-8165-6dc7353f754a).
2017-01-18 16:00:27.497 9377 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=59e8bd5b-55e1-4ab8-b506-a5853c7a92e9) has been successfully configured for deployment 'tempest' (UUID=4a62f373-9ce7-47a3-8165-6dc7353f754a)!

Use the --deployment-id argument to configure the verifier for any
deployment registered in Rally.

$ rally verify configure-verifier --deployment-id <UUID or name of a deployment>

If you want to reconfigure the Tempest verifier, just add the --reconfigure
argument to the command.

$ rally verify configure-verifier --reconfigure
2017-01-18 16:08:50.932 9786 INFO rally.api [-] Configuring verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97).
2017-01-18 16:08:50.933 9786 INFO rally.api [-] Verifier is already configured!
2017-01-18 16:08:50.933 9786 INFO rally.api [-] Reconfiguring verifier.
2017-01-18 16:08:52.806 9786 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) has been successfully configured for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

Moreover, it is possible to extend the default verifier configuration by
providing the --extend argument.

$ cat extra_options.conf
[some-section-1]
some-option = some-value

[some-section-2]
some-option = some-value

$ rally verify configure-verifier --extend extra_options.conf
2017-01-18 16:15:12.248 10029 INFO rally.api [-] Configuring verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97).
2017-01-18 16:15:12.249 10029 INFO rally.api [-] Verifier is already configured!
2017-01-18 16:15:12.249 10029 INFO rally.api [-] Adding extra options to verifier configuration.
2017-01-18 16:15:12.439 10029 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) has been successfully configured for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

$ rally verify configure-verifier --extend '{section-1: {option: value}, section-2: {option: value}}'
2017-01-18 16:18:07.317 10180 INFO rally.api [-] Configuring verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97).
2017-01-18 16:18:07.317 10180 INFO rally.api [-] Verifier is already configured!
2017-01-18 16:18:07.317 10180 INFO rally.api [-] Adding extra options to verifier configuration.
2017-01-18 16:18:07.549 10180 INFO rally.api [-] Verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) has been successfully configured for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

In order to see the generated Tempest config file use the --show argument.

$ rally verify configure-verifier --show
2017-01-18 16:19:25.412 10227 INFO rally.api [-] Configuring verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97).
2017-01-18 16:19:25.412 10227 INFO rally.api [-] Verifier is already configured!

[DEFAULT]
debug = True
log_file = tempest.log
use_stderr = False

[auth]
use_dynamic_credentials = True
admin_username = admin
admin_password = admin
admin_project_name = admin
admin_domain_name = Default
...

Start a verification

In order to start a verification execute the following command:

$ rally verify start
2017-01-18 16:49:35.367 12162 INFO rally.api [-] Starting verification (UUID=0673ca09-bdb6-4814-a33e-17731559ff33) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 16:49:44.404 12162 INFO tempest-verifier [-] {0} tempest.api.baremetal.admin.test_chassis.TestChassis ... skip: TestChassis skipped as Ironic is not available
2017-01-18 16:49:44.404 12162 INFO tempest-verifier [-] {0} tempest.api.baremetal.admin.test_drivers.TestDrivers ... skip: TestDrivers skipped as Ironic is not available
2017-01-18 16:49:44.429 12162 INFO tempest-verifier [-] {3} tempest.api.baremetal.admin.test_ports_negative.TestPortsNegative ... skip: TestPortsNegative skipped as Ironic is not available
2017-01-18 16:49:44.438 12162 INFO tempest-verifier [-] {2} tempest.api.baremetal.admin.test_nodestates.TestNodeStates ... skip: TestNodeStates skipped as Ironic is not available
2017-01-18 16:49:44.438 12162 INFO tempest-verifier [-] {2} tempest.api.baremetal.admin.test_ports.TestPorts ... skip: TestPorts skipped as Ironic is not available
2017-01-18 16:49:44.439 12162 INFO tempest-verifier [-] {1} tempest.api.baremetal.admin.test_api_discovery.TestApiDiscovery ... skip: TestApiDiscovery skipped as Ironic is not available
2017-01-18 16:49:44.439 12162 INFO tempest-verifier [-] {1} tempest.api.baremetal.admin.test_nodes.TestNodes ... skip: TestNodes skipped as Ironic is not available
2017-01-18 16:49:47.083 12162 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_availability_zone_negative.AZAdminNegativeTestJSON.test_get_availability_zone_list_detail_with_non_admin_user ... success [1.013s]
2017-01-18 16:49:47.098 12162 INFO tempest-verifier [-] {1} tempest.api.compute.admin.test_availability_zone.AZAdminV2TestJSON.test_get_availability_zone_list ... success [1.063s]
2017-01-18 16:49:47.321 12162 INFO tempest-verifier [-] {1} tempest.api.compute.admin.test_availability_zone.AZAdminV2TestJSON.test_get_availability_zone_list_detail ... success [0.224s]
...

By default, the command runs the full suite of Tempest tests for the current
deployment. Also, it is possible to run tests of any created verifier, and for
any registered deployment in Rally, using the --id and --deployment-id
arguments.

$ rally verify start --id <UUID or name of a verifier> --deployment-id <UUID or name of a deployment>

Also, there is a possibility to run a certain suite of Tempest tests, using
the --pattern argument.

$ rally verify start --pattern set=compute
2017-01-18 16:58:40.378 12631 INFO rally.api [-] Starting verification (UUID=a4bd3993-ba3d-425c-ab81-38b2f627e682) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 16:58:44.883 12631 INFO tempest-verifier [-] {1} tempest.api.compute.admin.test_auto_allocate_network.AutoAllocateNetworkTest ... skip: The microversion range[2.37 - latest] of this test is out of the configuration range[None - None].
2017-01-18 16:58:47.330 12631 INFO tempest-verifier [-] {1} tempest.api.compute.admin.test_availability_zone.AZAdminV2TestJSON.test_get_availability_zone_list ... success [0.680s]
2017-01-18 16:58:47.416 12631 INFO tempest-verifier [-] {2} tempest.api.compute.admin.test_availability_zone_negative.AZAdminNegativeTestJSON.test_get_availability_zone_list_detail_with_non_admin_user ... success [0.761s]
2017-01-18 16:58:47.610 12631 INFO tempest-verifier [-] {1} tempest.api.compute.admin.test_availability_zone.AZAdminV2TestJSON.test_get_availability_zone_list_detail ... success [0.280s]
2017-01-18 16:58:47.694 12631 INFO tempest-verifier [-] {3} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_using_string_ram ... success [1.015s]
2017-01-18 16:58:48.514 12631 INFO tempest-verifier [-] {3} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_verify_entry_in_list_details ... success [0.820s]
2017-01-18 16:58:48.675 12631 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_agents.AgentsAdminTestJSON.test_create_agent ... success [0.777s]
2017-01-18 16:58:49.090 12631 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_agents.AgentsAdminTestJSON.test_delete_agent ... success [0.415s]
2017-01-18 16:58:49.160 12631 INFO tempest-verifier [-] {3} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_int_id ... success [0.646s]
2017-01-18 16:58:49.546 12631 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_agents.AgentsAdminTestJSON.test_list_agents ... success [0.455s]
...

Available suites for Tempest 14.0.0 (the latest Tempest release when this
documentation was written) are full, smoke, compute, identity,
image, network, object_storage, orchestration, volume,
scenario. The number of available suites depends on Tempest version because
some test sets move from the Tempest tree to the corresponding Tempest plugins.

Moreover, users can run a certain set of tests, using a regular expression.

$ rally verify start --pattern tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON
2017-01-18 17:00:36.590 12745 INFO rally.api [-] Starting verification (UUID=1e12510e-7391-48ed-aba2-8fefe1075a87) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:00:44.241 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_using_string_ram ... success [1.044s]
2017-01-18 17:00:45.108 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_verify_entry_in_list_details ... success [0.868s]
2017-01-18 17:00:45.863 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_int_id ... success [0.754s]
2017-01-18 17:00:47.575 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_none_id ... success [1.712s]
2017-01-18 17:00:48.260 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_uuid_id ... success [0.684s]
2017-01-18 17:00:50.951 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_list_flavor_without_extra_data ... success [2.689s]
2017-01-18 17:00:51.631 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_server_with_non_public_flavor ... success [0.680s]
2017-01-18 17:00:54.192 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_is_public_string_variations ... success [2.558s]
2017-01-18 17:00:55.102 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_list_non_public_flavor ... success [0.911s]
2017-01-18 17:00:55.774 12745 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_list_public_flavor_with_other_user ... success [0.673s]
2017-01-18 17:00:59.602 12745 INFO rally.api [-] Verification (UUID=1e12510e-7391-48ed-aba2-8fefe1075a87) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 10 tests in 14.578 sec.
 - Success: 10
 - Skipped: 0
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 0

Using verification (UUID=1e12510e-7391-48ed-aba2-8fefe1075a87) as the default verification for the future operations.

In such a way it is possible to run tests from a certain directory or class,
and even run a single test.

$ rally verify start --pattern tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_using_string_ram
2017-01-18 17:01:43.993 12819 INFO rally.api [-] Starting verification (UUID=b9a386e1-d1a1-41b3-b369-9607173de63e) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:01:52.592 12819 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_using_string_ram ... success [1.214s]
2017-01-18 17:01:57.220 12819 INFO rally.api [-] Verification (UUID=b9a386e1-d1a1-41b3-b369-9607173de63e) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 1 tests in 4.139 sec.
 - Success: 1
 - Skipped: 0
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 0

Using verification (UUID=b9a386e1-d1a1-41b3-b369-9607173de63e) as the default verification for the future operations.

In order to see errors of failed tests after the verification finished use the
--detailed argument.

$ rally verify start --pattern tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON --detailed
2017-01-25 19:34:41.113 16123 INFO rally.api [-] Starting verification (UUID=ceb6f26b-5830-42c5-ab09-bfd985ed4cb7) for deployment 'tempest-2' (UUID=38a397d0-ee11-475d-ab08-e17be09d0bcd) by verifier 'tempest-verifier' (UUID=bbf51ada-9dd6-4b25-b1b6-b651e0541dde).
2017-01-25 19:34:50.188 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_create_server_with_az ... fail [0.784s]
2017-01-25 19:34:51.587 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_get_details ... success [1.401s]
2017-01-25 19:34:52.947 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_list ... success [1.359s]
2017-01-25 19:34:53.863 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_remove_host ... success [0.915s]
2017-01-25 19:34:54.577 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_delete ... success [0.714s]
2017-01-25 19:34:55.221 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_delete_with_az ... success [0.643s]
2017-01-25 19:34:55.974 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_update_metadata_get_details ... success [0.752s]
2017-01-25 19:34:56.689 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_update_with_az ... success [0.714s]
2017-01-25 19:34:57.144 16123 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_verify_entry_in_list ... success [0.456s]
2017-01-25 19:35:01.132 16123 INFO rally.api [-] Verification (UUID=ceb6f26b-5830-42c5-ab09-bfd985ed4cb7) has been successfully finished for deployment 'tempest-2' (UUID=38a397d0-ee11-475d-ab08-e17be09d0bcd)!

=============================
Failed 1 test - output below:
=============================

tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_create_server_with_az

Traceback (most recent call last):
 File "tempest/api/compute/admin/test_aggregates.py", line 226, in test_aggregate_add_host_create_server_with_az
 self.client.add_host(aggregate['id'], host=self.host)
 File "tempest/lib/services/compute/aggregates_client.py", line 95, in add_host
 post_body)
 File "tempest/lib/common/rest_client.py", line 275, in post
 return self.request('POST', url, extra_headers, headers, body, chunked)
 File "tempest/lib/services/compute/base_compute_client.py", line 48, in request
 method, url, extra_headers, headers, body, chunked)
 File "tempest/lib/common/rest_client.py", line 663, in request
 self._error_checker(resp, resp_body)
 File "tempest/lib/common/rest_client.py", line 775, in _error_checker
 raise exceptions.Conflict(resp_body, resp=resp)
tempest.lib.exceptions.Conflict: An object with that identifier already exists
Details: {u'message': u"Cannot add host to aggregate 2658. Reason: One or more hosts already in availability zone(s) [u'tempest-test_az-34611847'].", u'code': 409}

======
Totals
======

Ran: 9 tests in 12.391 sec.
 - Success: 8
 - Skipped: 0
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 1

Using verification (UUID=ceb6f26b-5830-42c5-ab09-bfd985ed4cb7) as the default verification for the future operations.

Also, there is a possibility to run Tempest tests from a file. Users can
specify a list of tests in the file and run them, using the --load-list
argument.

$ cat load-list.txt
tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_create_list_delete_endpoint[id-9974530a-aa28-4362-8403-f06db02b26c1]
tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_list_endpoints[id-11f590eb-59d8-4067-8b2b-980c7f387f51]
tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_assign_user_role[id-0146f675-ffbd-4208-b3a4-60eb628dbc5e]
tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_get_role_by_id[id-db6870bd-a6ed-43be-a9b1-2f10a5c9994f]
tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_roles[id-75d9593f-50b7-4fcf-bd64-e3fb4a278e23]
tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_user_roles[id-262e1e3e-ed71-4edd-a0e5-d64e83d66d05]
tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_remove_user_role[id-f0b9292c-d3ba-4082-aa6c-440489beef69]
tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_role_create_delete[id-c62d909d-6c21-48c0-ae40-0a0760e6db5e]

$ rally verify start --load-list load-list.txt
2017-01-18 17:04:13.900 12964 INFO rally.api [-] Starting verification (UUID=af766b2f-cada-44db-a0c2-336ab0c17c27) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:04:21.813 12964 INFO tempest-verifier [-] {1} tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_create_list_delete_endpoint ... success [1.237s]
2017-01-18 17:04:22.115 12964 INFO tempest-verifier [-] {1} tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_list_endpoints ... success [0.301s]
2017-01-18 17:04:24.507 12964 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_assign_user_role ... success [3.663s]
2017-01-18 17:04:25.164 12964 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_get_role_by_id ... success [0.657s]
2017-01-18 17:04:25.435 12964 INFO tempest-verifier [-] {2} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_roles ... success [0.271s]
2017-01-18 17:04:27.905 12964 INFO tempest-verifier [-] {2} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_user_roles ... success [2.468s]
2017-01-18 17:04:30.645 12964 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_remove_user_role ... success [2.740s]
2017-01-18 17:04:31.886 12964 INFO tempest-verifier [-] {3} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_role_create_delete ... success [1.239s]
2017-01-18 17:04:38.122 12964 INFO rally.api [-] Verification (UUID=af766b2f-cada-44db-a0c2-336ab0c17c27) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 8 tests in 14.748 sec.
 - Success: 8
 - Skipped: 0
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 0

Using verification (UUID=af766b2f-cada-44db-a0c2-336ab0c17c27) as the default verification for the future operations.

Moreover, it is possible to skip a certain list of Tempest tests, using the
--skip-list argument.

$ cat skip-list.yaml
tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_using_string_ram[id-3b541a2e-2ac2-4b42-8b8d-ba6e22fcd4da]:
tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_verify_entry_in_list_details[id-8261d7b0-be58-43ec-a2e5-300573c3f6c5]: Reason 1
tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_int_id[id-8b4330e1-12c4-4554-9390-e6639971f086]:
tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_none_id[id-f83fe669-6758-448a-a85e-32d351f36fe0]: Reason 2
tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_uuid_id[id-94c9bb4e-2c2a-4f3c-bb1f-5f0daf918e6d]:

$ rally verify start --pattern tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON --skip-list skip-list.yaml
2017-01-18 17:13:44.475 13424 INFO rally.api [-] Starting verification (UUID=ec94b397-b546-4f12-82ba-bb17f052c3d0) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:13:49.298 13424 INFO tempest-verifier [-] {-} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_int_id ... skip
2017-01-18 17:13:49.298 13424 INFO tempest-verifier [-] {-} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_none_id ... skip: Reason 2
2017-01-18 17:13:49.298 13424 INFO tempest-verifier [-] {-} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_using_string_ram ... skip
2017-01-18 17:13:49.298 13424 INFO tempest-verifier [-] {-} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_with_uuid_id ... skip
2017-01-18 17:13:49.299 13424 INFO tempest-verifier [-] {-} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_flavor_verify_entry_in_list_details ... skip: Reason 1
2017-01-18 17:13:54.035 13424 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_list_flavor_without_extra_data ... success [1.889s]
2017-01-18 17:13:54.765 13424 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_create_server_with_non_public_flavor ... success [0.732s]
2017-01-18 17:13:57.478 13424 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_is_public_string_variations ... success [2.709s]
2017-01-18 17:13:58.438 13424 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_list_non_public_flavor ... success [0.962s]
2017-01-18 17:13:59.180 13424 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_flavors.FlavorsAdminTestJSON.test_list_public_flavor_with_other_user ... success [0.742s]
2017-01-18 17:14:03.969 13424 INFO rally.api [-] Verification (UUID=ec94b397-b546-4f12-82ba-bb17f052c3d0) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 10 tests in 9.882 sec.
 - Success: 5
 - Skipped: 5
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 0

Using verification (UUID=ec94b397-b546-4f12-82ba-bb17f052c3d0) as the default verification for the future operations.

Also, it is possible to specify the path to a file with a list of Tempest tests
that are expected to fail. In this case, the specified tests will have the
xfail status instead of fail.

$ cat xfail-list.yaml
tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_create_server_with_az[id-96be03c7-570d-409c-90f8-e4db3c646996]: Some reason why the test fails

$ rally verify start --pattern tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON --xfail-list xfail-list.yaml
2017-01-18 17:20:04.064 13720 INFO rally.api [-] Starting verification (UUID=c416b724-0276-4c24-ab60-3ba7078c0a80) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:20:17.359 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_create_server_with_az ... xfail [6.328s]: Some reason why the test fails
2017-01-18 17:20:18.337 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_get_details ... success [0.978s]
2017-01-18 17:20:19.379 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_host_list ... success [1.042s]
2017-01-18 17:20:20.213 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_add_remove_host ... success [0.833s]
2017-01-18 17:20:20.956 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_delete ... success [0.743s]
2017-01-18 17:20:21.772 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_delete_with_az ... success [0.815s]
2017-01-18 17:20:22.737 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_update_metadata_get_details ... success [0.964s]
2017-01-18 17:20:25.061 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_update_with_az ... success [2.323s]
2017-01-18 17:20:25.595 13720 INFO tempest-verifier [-] {0} tempest.api.compute.admin.test_aggregates.AggregatesAdminTestJSON.test_aggregate_create_verify_entry_in_list ... success [0.533s]
2017-01-18 17:20:30.142 13720 INFO rally.api [-] Verification (UUID=c416b724-0276-4c24-ab60-3ba7078c0a80) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 9 tests in 17.118 sec.
 - Success: 8
 - Skipped: 0
 - Expected failures: 1
 - Unexpected success: 0
 - Failures: 0

Using verification (UUID=c416b724-0276-4c24-ab60-3ba7078c0a80) as the default verification for the future operations.

Sometimes users may want to use the specific concurrency for running tests
based on their deployments and available resources. In this case, they can use
the --concurrency argument to specify how many processes to use to run
Tempest tests. The default value (0) auto-detects CPU count.

$ rally verify start --load-list load-list.txt --concurrency 1
2017-01-18 17:05:38.658 13054 INFO rally.api [-] Starting verification (UUID=cbf5e604-6bc9-47cd-9c8c-5e4c9e9545a0) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:05:45.474 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_create_list_delete_endpoint ... success [0.917s]
2017-01-18 17:05:45.653 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_list_endpoints ... success [0.179s]
2017-01-18 17:05:55.497 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_assign_user_role ... success [2.673s]
2017-01-18 17:05:56.237 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_get_role_by_id ... success [0.740s]
2017-01-18 17:05:56.642 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_roles ... success [0.403s]
2017-01-18 17:06:00.011 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_user_roles ... success [3.371s]
2017-01-18 17:06:02.987 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_remove_user_role ... success [2.973s]
2017-01-18 17:06:04.927 13054 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_role_create_delete ... success [1.939s]
2017-01-18 17:06:11.166 13054 INFO rally.api [-] Verification (UUID=cbf5e604-6bc9-47cd-9c8c-5e4c9e9545a0) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 8 tests in 23.043 sec.
 - Success: 8
 - Skipped: 0
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 0

Using verification (UUID=cbf5e604-6bc9-47cd-9c8c-5e4c9e9545a0) as the default verification for the future operations.

Also, there is a possibility to rerun tests from any verification. In order
to rerun tests from some verification execute the following command:

$ rally verify rerun --uuid cbf5e604-6bc9-47cd-9c8c-5e4c9e9545a0
2017-01-18 17:29:35.692 14127 INFO rally.api [-] Re-running tests from verification (UUID=cbf5e604-6bc9-47cd-9c8c-5e4c9e9545a0) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97).
2017-01-18 17:29:35.792 14127 INFO rally.api [-] Starting verification (UUID=51aa3275-f028-4f2d-9d63-0db679fdf266) for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97) by verifier 'tempest-verifier' (UUID=16b73e48-09ad-4a54-92eb-2f2708b72c54).
2017-01-18 17:29:43.980 14127 INFO tempest-verifier [-] {1} tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_create_list_delete_endpoint ... success [2.172s]
2017-01-18 17:29:44.156 14127 INFO tempest-verifier [-] {1} tempest.api.identity.admin.v2.test_endpoints.EndPointsTestJSON.test_list_endpoints ... success [0.177s]
2017-01-18 17:29:45.333 14127 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_assign_user_role ... success [3.302s]
2017-01-18 17:29:45.952 14127 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_get_role_by_id ... success [0.619s]
2017-01-18 17:29:46.219 14127 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_roles ... success [0.266s]
2017-01-18 17:29:48.964 14127 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_list_user_roles ... success [2.744s]
2017-01-18 17:29:52.543 14127 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_remove_user_role ... success [3.578s]
2017-01-18 17:29:53.843 14127 INFO tempest-verifier [-] {0} tempest.api.identity.admin.v2.test_roles.RolesTestJSON.test_role_create_delete ... success [1.300s]
2017-01-18 17:30:01.258 14127 INFO rally.api [-] Verification (UUID=51aa3275-f028-4f2d-9d63-0db679fdf266) has been successfully finished for deployment 'tempest-2' (UUID=351fdfa2-99ad-4447-ba31-22e76630df97)!

======
Totals
======
Ran: 8 tests in 14.926 sec.
 - Success: 8
 - Skipped: 0
 - Expected failures: 0
 - Unexpected success: 0
 - Failures: 0

Verification UUID: 51aa3275-f028-4f2d-9d63-0db679fdf266.

In order to rerun only failed tests add the --failed argument to the
command.

$ rally verify rerun --uuid <UUID of a verification> --failed

A separated page about building verification reports:
Verification reports.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Quick start

Rally OpenStack Gates

Gate jobs

The OpenStack CI system uses the so-called "Gate jobs" to control
merges of patches submitted for review on Gerrit. These Gate jobs usually
just launch a set of tests -- unit, functional, integration, style -- that
check that the proposed patch does not break the software and can be merged
into the target branch, thus providing additional guarantees for the stability
of the software.

Create a custom Rally Gate job

You can create a Rally Gate job for your project to run Rally benchmarks
against the patchsets proposed to be merged into your project.

To create a rally-gate job, you should create a rally-jobs/ directory at
the root of your project.

As a rule, this directory contains only {projectname}.yaml, but more
scenarios and jobs can be added as well. This yaml file is in fact an input
Rally task file specifying benchmark scenarios that should be run in your gate
job.

To make {projectname}.yaml run in gates, you need to add "rally-jobs" to
the "jobs" section of projects.yaml in openstack-infra/project-config.

Example: Rally Gate job for Glance

Let's take a look at an example for the Glance [https://wiki.openstack.org/wiki/Glance] project:

Edit jenkins/jobs/projects.yaml:

- project:
 name: glance
 node: 'bare-precise || bare-trusty'
 tarball-site: tarballs.openstack.org
 doc-publisher-site: docs.openstack.org

 jobs:
 - python-jobs
 - python-icehouse-bitrot-jobs
 - python-juno-bitrot-jobs
 - openstack-publish-jobs
 - translation-jobs
 - rally-jobs

Also add gate-rally-dsvm-{projectname} to zuul/layout.yaml:

- name: openstack/glance
 template:
 - name: merge-check
 - name: python26-jobs
 - name: python-jobs
 - name: openstack-server-publish-jobs
 - name: openstack-server-release-jobs
 - name: periodic-icehouse
 - name: periodic-juno
 - name: check-requirements
 - name: integrated-gate
 - name: translation-jobs
 - name: large-ops
 - name: experimental-tripleo-jobs
 check:
 - check-devstack-dsvm-cells
 - gate-rally-dsvm-glance
 gate:
 - gate-devstack-dsvm-cells
 experimental:
 - gate-grenade-dsvm-forward

To add one more scenario and job, you need to add {scenarioname}.yaml file
here, and gate-rally-dsvm-{scenarioname} to projects.yaml.

For example, you can add myscenario.yaml to rally-jobs directory in your
project and then edit jenkins/jobs/projects.yaml in this way:

- project:
 name: glance
 github-org: openstack
 node: bare-precise
 tarball-site: tarballs.openstack.org
 doc-publisher-site: docs.openstack.org

 jobs:
 - python-jobs
 - python-havana-bitrot-jobs
 - openstack-publish-jobs
 - translation-jobs
 - rally-jobs
 - 'gate-rally-dsvm-{name}':
 name: myscenario

Finally, add gate-rally-dsvm-myscenario to zuul/layout.yaml:

- name: openstack/glance
 template:
 - name: python-jobs
 - name: openstack-server-publish-jobs
 - name: periodic-havana
 - name: check-requirements
 - name: integrated-gate
 check:
 - check-devstack-dsvm-cells
 - check-tempest-dsvm-postgres-full
 - gate-tempest-dsvm-large-ops
 - gate-tempest-dsvm-neutron-large-ops
 - gate-rally-dsvm-myscenario

It is also possible to arrange your input task files as templates based on
Jinja2. Say, you want to set the image names used throughout the
myscenario.yaml task file as a variable parameter. Then, replace concrete
image names in this file with a variable:

...

NovaServers.boot_and_delete_server:
 -
 args:
 image:
 name: {{image_name}}
 ...

NovaServers.boot_and_list_server:
 -
 args:
 image:
 name: {{image_name}}
 ...

and create a file named myscenario_args.yaml that will define the parameter
values:

 image_name: "^cirros.*uec$"

this file will be automatically used by Rally to substitute the variables in
myscenario.yaml.

Plugins & Extras in Rally Gate jobs

Along with scenario configs in yaml, the rally-jobs directory can also
contain two subdirectories:

	plugins: Plugins needed for your gate job;

	extra: auxiliary files like bash scripts or images.

Both subdirectories will be copied to ~/.rally/ before the job gets started.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Command Line Interface

	Category: db

	Category: deployment

	Category: plugin

	Category: task

	Category: verify

Category: db

Commands for DB management.

rally-manage db create

Create Rally database.

rally-manage db recreate

Drop and create Rally database.

This will delete all existing data.

rally-manage db revision

Print current Rally database revision UUID.

rally-manage db upgrade

Upgrade Rally database to the latest state.

Category: deployment

Set of commands that allow you to manage deployments.

rally deployment check

Check keystone authentication and list all available services.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

Type: str

rally deployment config

Display configuration of the deployment.

Output is the configuration of the deployment in a
pretty-printed JSON format.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

Type: str

rally deployment create

Create new deployment.

This command will create a new deployment record in rally
database. In the case of ExistingCloud deployment engine it
will use the cloud represented in the configuration. If the
cloud doesn't exist, Rally can deploy a new one for you with
Devstack or Fuel. Different deployment engines exist for these
cases.

If you use the ExistingCloud deployment engine you can pass
a deployment config by environment variables with --fromenv:

OS_USERNAME
OS_PASSWORD
OS_AUTH_URL
OS_TENANT_NAME or OS_PROJECT_NAME
OS_ENDPOINT_TYPE or OS_INTERFACE
OS_ENDPOINT
OS_REGION_NAME
OS_CACERT
OS_INSECURE
OS_IDENTITY_API_VERSION

All other deployment engines need more complex configuration
data, so it should be stored in a configuration file.

You can use physical servers, LXC containers, KVM virtual
machines or virtual machines in OpenStack for deploying the
cloud. Except physical servers, Rally can create cluster nodes
for you. Interaction with virtualization software, OpenStack
cloud or physical servers is provided by server providers.

Command arguments:

--name <name> (ref)

Name of the deployment.

Type: str

--fromenv (ref)

Read environment variables instead of config file.

--filename <path> (ref)

Path to the configuration file of the deployment.

Type: str

Default: None

--no-use (ref)

Don't set new deployment as default for future operations.

rally deployment destroy

Destroy existing deployment.

This will delete all containers, virtual machines, OpenStack
instances or Fuel clusters created during Rally deployment
creation. Also it will remove the deployment record from the
Rally database.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

Type: str

rally deployment list

List existing deployments.

rally deployment recreate

Destroy and create an existing deployment.

Unlike 'deployment destroy', the deployment database record
will not be deleted, so the deployment UUID stays the same.

Command arguments:

--filename <path> (ref)

Path to the configuration file of the deployment.

Type: str

Default: None

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

Type: str

rally deployment show

Show the credentials of the deployment.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

Type: str

rally deployment use

Set active deployment.

Command arguments:

--deployment <uuid> (ref)

UUID or name of a deployment.

Type: str

Category: plugin

Set of commands that allow you to manage Rally plugins.

rally plugin list

List all Rally plugins that match name and namespace.

Command arguments:

--name <name> (ref)

List only plugins that match the given name.

Type: str

Default: None

--namespace <namespace> (ref)

List only plugins that are in the specified namespace.

Type: str

Default: None

--plugin-base <plugin_base> (ref)

Plugin base class.

Type: str

Default: None

rally plugin show

Show detailed information about a Rally plugin.

Command arguments:

--name <name> (ref)

Plugin name.

Type: str

--namespace <namespace> (ref)

Plugin namespace.

Type: str

Default: None

Category: task

Set of commands that allow you to manage benchmarking tasks and results.

rally task abort

Abort a running benchmarking task.

Command arguments:

--uuid <uuid> (ref)

UUID of task.

Type: str

--soft (ref)

Abort task after current scenario finishes execution.

rally task delete

Delete task and its results.

Command arguments:

--force (ref)

force delete

--uuid <task-id> (ref)

UUID of task or a list of task UUIDs.

Type: str

rally task detailed

Print detailed information about given task.

Command arguments:

--uuid <uuid> (ref)

UUID of task. If --uuid is "last" the results of the most recently created task will be displayed.

Type: str

--iterations-data (ref)

Print detailed results for each iteration.

rally task export

Export task results to the custom task's exporting system.

Command arguments:

--uuid <uuid> (ref)

UUID of a the task.

Type: str

--connection <connection> (ref)

Connection url to the task export system.

Type: str

rally task list

List tasks, started and finished.

Displayed tasks can be filtered by status or deployment. By
default 'rally task list' will display tasks from the active
deployment without filtering by status.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

Type: str

--all-deployments (ref)

List tasks from all deployments.

--status <status> (ref)

List tasks with specified status. Available statuses: aborted, aborting, cleaning up, failed, finished, init, paused, running, setting up, soft_aborting, verifying

Type: str

Default: None

--uuids-only (ref)

List task UUIDs only.

rally task report

Generate report file for specified task.

Command arguments:

--tasks <tasks> (ref)

UUIDs of tasks, or JSON files with task results

Default: None

--out <path> (ref)

Path to output file.

Type: str

Default: None

--open (ref)

Open the output in a browser.

--html (ref)

Generate the report in HTML.

--html-static (ref)

Generate the report in HTML with embedded JS and CSS, so it will not depend on Internet availability.

--junit (ref)

Generate the report in the JUnit format.

rally task results

Display raw task results.

This will produce a lot of output data about every iteration.

Command arguments:

--uuid <uuid> (ref)

UUID of task.

Type: str

rally task sla-check

Display SLA check results table.

Command arguments:

--uuid <uuid> (ref)

UUID of task.

Type: str

--json (ref)

Output in JSON format.

rally task sla_check

DEPRECATED since Rally 0.8.0, use rally task sla-check instead.

Command arguments:

--uuid <uuid> (ref)

UUID of task.

Type: str

--json (ref)

Output in JSON format.

rally task start

Start benchmark task.

If both task_args and task_args_file are specified, they will
be merged. task_args has a higher priority so it will override
values from task_args_file.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

Type: str

--task <path>, --filename <path> (ref)

Note

The default value for the --task argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally task start, if the --no-use argument was not used.

Hint

You can set the default value by executing rally task use <uuid> (ref).

Path to the input task file

--task-args <json> (ref)

Input task args (JSON dict). These args are used to render the Jinja2 template in the input task.

Default: None

--task-args-file <path> (ref)

Path to the file with input task args (dict in JSON/YAML). These args are used to render the Jinja2 template in the input task.

Default: None

--tag <tag> (ref)

Tag for this task

Default: None

--no-use (ref)

Don't set new task as default for future operations.

--abort-on-sla-failure (ref)

Abort the execution of a benchmark scenario whenany SLA check for it fails.

rally task status

Display the current status of a task.

Command arguments:

--uuid <uuid> (ref)

UUID of task

Type: str

rally task trends

Generate workloads trends HTML report.

Command arguments:

--out <path> (ref)

Path to output file.

Type: str

--open (ref)

Open the output in a browser.

--tasks <tasks> (ref)

UUIDs of tasks, or JSON files with task results

rally task use

Set active task.

Command arguments:

--uuid <uuid> (ref)

UUID of the task

Type: str

--task (ref)

[Deprecated since Rally 0.2.0] Use '--uuid' instead.

Type: str

rally task validate

Validate a task configuration file.

This will check that task configuration file has valid syntax and
all required options of scenarios, contexts, SLA and runners are set.

If both task_args and task_args_file are specified, they will
be merged. task_args has a higher priority so it will override
values from task_args_file.

Command arguments:

--deployment <uuid> (ref)

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

Type: str

--task <path>, --filename <path> (ref)

Note

The default value for the --task argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally task start, if the --no-use argument was not used.

Hint

You can set the default value by executing rally task use <uuid> (ref).

Path to the input task file.

--task-args <json> (ref)

Input task args (JSON dict). These args are used to render the Jinja2 template in the input task.

Default: None

--task-args-file <path> (ref)

Path to the file with input task args (dict in JSON/YAML). These args are used to render the Jinja2 template in the input task.

Default: None

Category: verify

Verify an OpenStack cloud via a verifier.

rally verify add-verifier-ext

Add a verifier extension.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--source <source> (ref)

Path or URL to the repo to clone verifier extension from.

Type: str

Default: None

--version <version> (ref)

Branch, tag or commit ID to checkout before installation of the verifier extension (the 'master' branch is used by default).

Type: str

Default: None

--extra-settings <extra_settings> (ref)

Extra installation settings for verifier extension.

Type: str

Default: None

rally verify configure-verifier

Configure a verifier for a specific deployment.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--reconfigure (ref)

Reconfigure verifier.

--extend <path/json/yaml> (ref)

Extend verifier configuration with extra options. If options are already present, the given ones will override them. Can be a path to a regular config file or just a json/yaml.

Type: str

Default: None

--override <path> (ref)

Override verifier configuration by another one from a given source.

Type: str

Default: None

--show (ref)

Show verifier configuration.

rally verify create-verifier

Create a verifier.

Command arguments:

--name <name> (ref)

Verifier name (for example, 'My verifier').

Type: str

--type <type> (ref)

Verifier plugin name. HINT: You can list all verifier plugins, executing command rally verify list-plugins.

Type: str

--namespace <name> (ref)

Verifier plugin namespace. Should be specified in case of two verifier plugins with equal names but in different namespaces.

Type: str

Default:

--source <source> (ref)

Path or URL to the repo to clone verifier from.

Type: str

Default: None

--version <version> (ref)

Branch, tag or commit ID to checkout before verifier installation (the 'master' branch is used by default).

Type: str

Default: master

--system-wide (ref)

Use the system-wide environment for verifier instead of a virtual environment.

--extra-settings <extra_settings> (ref)

Extra installation settings for verifier.

Type: str

Default: None

--no-use (ref)

Not to set the created verifier as the default verifier for future operations.

rally verify delete

Delete a verification or a few verifications.

Command arguments:

--uuid <uuid> (ref)

UUIDs of verifications. HINT: You can list all verifications, executing command rally verify list.

Type: str

rally verify delete-verifier

Delete a verifier.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. If specified, only the deployment-specific data will be deleted for verifier. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--force (ref)

Delete all stored verifications of the specified verifier. If a deployment specified, only verifications of this deployment will be deleted. Use this argument carefully! You can delete verifications that may be important to you.

rally verify delete-verifier-ext

Delete a verifier extension.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--name <name> (ref)

Verifier extension name.

Type: str

Default: None

rally verify import

Import results of a test run into the Rally database.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--file <path> (ref)

File to import test results from.

Type: str

Default: None

--run-args <run_args> (ref)

Arguments that might be used when running tests. For example, '{concurrency: 2, pattern: set=identity}'.

Type: str

Default: None

--no-use (ref)

Not to set the created verification as the default verification for future operations.

rally verify list

List all verifications.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--tag <tag> (ref)

Tags to filter verifications by.

Type: str

Default: None

--status <status> (ref)

Status to filter verifications by.

Type: str

Default: None

rally verify list-plugins

List all plugins for verifiers management.

Command arguments:

--namespace <name> (ref)

Namespace name (for example, openstack).

Type: str

Default: None

rally verify list-verifier-exts

List all verifier extensions.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

rally verify list-verifier-tests

List all verifier tests.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--pattern <pattern> (ref)

Pattern which will be used for matching. Can be a regexp or a verifier-specific entity (for example, in case of Tempest you can specify 'set=smoke'.

Type: str

Default:

rally verify list-verifiers

List all verifiers.

Command arguments:

--status <status> (ref)

Status to filter verifiers by.

Type: str

Default: None

rally verify report

Generate a report for a verification or a few verifications.

Command arguments:

--uuid <uuid> (ref)

UUIDs of verifications. HINT: You can list all verifications, executing command rally verify list.

Type: str

Default: None

--type <type> (ref)

Report type (Defaults to JSON). Out-of-the-box types: HTML, HTML-Static, JSON, JUnit-XML. HINT: You can list all types, executing rally plugin list --plugin-base VerificationReporter command.

Type: str

Default: None

--to <dest> (ref)

Report destination. Can be a path to a file (in case of HTML, JSON types) to save the report to or a connection string. It depends on report type.

Type: str

Default: None

--open (ref)

Open the output file in a browser.

rally verify rerun

Rerun tests from a verification for a specific deployment.

Command arguments:

--uuid <uuid> (ref)

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--failed (ref)

Rerun only failed tests.

rally verify show

Show detailed information about a verification.

Command arguments:

--uuid <uuid> (ref)

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

Type: str

Default: None

--sort-by <query> (ref)

Sort tests by 'name', 'duration' or 'status'.

Type: str

Default: name

--detailed (ref)

Show verification details such as run arguments and errors of failed tests.

rally verify show-verifier

Show detailed information about a verifier.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

rally verify start

Start a verification (run verifier tests).

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--tag <tag> (ref)

Mark verification with a tag or a few tags.

Type: str

Default: None

--pattern <pattern> (ref)

Pattern which will be used for running tests. Can be a regexp or a verifier-specific entity (for example, in case of Tempest you can specify 'set=smoke'.

Type: str

Default: None

--concurrency <N> (ref)

How many processes to use to run verifier tests. The default value (0) auto-detects your CPU count.

Type: int

Default: 0

--load-list <path> (ref)

Path to a file with a list of tests to run.

Type: str

Default: None

--skip-list <path> (ref)

Path to a file with a list of tests to skip. Format: json or yaml like a dictionary where keys are test names and values are reasons.

Type: str

Default: None

--xfail-list <path> (ref)

Path to a file with a list of tests that will be considered as expected failures. Format: json or yaml like a dictionary where keys are test names and values are reasons.

Type: str

Default: None

--detailed (ref)

Show verification details such as errors of failed tests.

--no-use (ref)

Not to set the finished verification as the default verification for future operations.

rally verify update-verifier

Update a verifier.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--update-venv (ref)

Update the virtual environment for verifier.

--version <version> (ref)

Branch, tag or commit ID to checkout. HINT: Specify the same version to pull the latest repo code.

Type: str

Default: None

--system-wide (ref)

Switch to using the system-wide environment.

--no-system-wide (ref)

Switch to using the virtual environment. If the virtual environment doesn't exist, it will be created.

rally verify use

Choose a verification to use for the future operations.

Command arguments:

--uuid <uuid> (ref)

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

Type: str

rally verify use-verifier

Choose a verifier to use for the future operations.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Task Component

This section describes Rally Task Component (including feature presented since
Rally v0.5.0, allowing to analyze statistics trends for the given tasks).

	HTML Reports
	Task Report

	Trends Report

	CLI References

HTML Reports

HTML reports provide comprehensive analysis.
Data is structured and displayed interactively, with charts and tables.

Task Report

Get the whole information about task workloads results, in pretty
and convenient format!

[image: ../_images/Report-Collage.png]

Generate report for single task, using task UUID

Having a finished task, generate report with command:

$ rally task report <task-uuid> --out <report-file>

Example:

$ rally task report 6f63d9ec-eecd-4696-8e9c-2ba065c68535 --out report.html

Generate report for single task, using JSON file

Report can be generated from a task results JSON file.
This file can be generated with command rally task results:

$ rally task results 6f63d9ec-eecd-4696-8e9c-2ba065c68535 > results.json
$ rally task report results.json --out report.html

Generate report for many tasks

Report can be generated from many tasks. All workloads from specified
tasks results will be composed into an entire report.
To generate report, use --tasks argument with specified list of tasks UUIDs
and/or tasks results JSON files.

Example:

$ rally task report --tasks 6f63d9ec-eecd-4696-8e9c-2ba065c68535 20ae7e95-7395-4be4-aec2-b89220adee60 a5737eba-a204-43d6-a262-d5ea4b0065da results.json another_results.json --out report.html

Task Overview

This is a table with brief summary of all workloads results.
All columns are sortable and clickable.

[image: ../_images/Report-Task-Overview.png]

Load duration

Time from first iteration start to last iteration end.
In other words, this is a time of all workload iterations execution.

Full duration

This time includes iterations time (Load duration)
plus time taken by another actions related to the task, mostly Contexts
execution time.

Iterations

How many times the workload has run. This comes from the value of
runner.times in task input file.

Failures

Number of failed iterations. Failure means that there was an Exception raised.

Success (SLA)

This is a boolean result of workload SLA. See
Service-level agreement explanation below.

Input file

This shows JSON which can be used to run a task with exactly the same workloads
list and configuration. This is not an exact copy (neither concatenation) of
actually used input files (in command rally task start), however this is
exactly what is needed to run workloads given in the report.

[image: ../_images/Report-Task-Input-file.png]

Tab «Overview»

Service-level agreement

SLA [https://en.wikipedia.org/wiki/Service-level_agreement] results appear in task report only if "sla" section is defined in task
input file.

For example, having this in task input file:

"sla": {
 "performance_degradation": {
 "max_degradation": 50
 },
 "max_seconds_per_iteration": 1.0,
 "failure_rate": {
 "max": 0
 },
 "outliers": {
 "max": 1,
 "min_iterations": 10,
 "sigmas": 10
 },
 "max_avg_duration": 0.5
}

will result SLA section similar to the following:

[image: ../_images/Report-Task-SLA.png]

What if workload has no "sla" configuration in input file?

If "sla" section is missed in input file, then block Service-level
agreement is not displayed and its result is assumed to be always passed
(no matter how many failures occurred).

Total durations

There is a durations analysis, which is represented by statistics table and
duration StackedArea chart.

[image: ../_images/Report-Task-Total-durations.png]

Table with statistics data

	Action

	Name of the workload metric that has some duration saved.
This is either an atomic action name or Total which points to workload

load duration.

	Min (sec)

	Minimal [https://en.wikipedia.org/wiki/Maxima_and_minima] duration value

	Median (sec)

	Median [https://en.wikipedia.org/wiki/Median] duration value

	90%ile (sec)

	Percentile [https://en.wikipedia.org/wiki/Percentile] for 90% durations

	95%ile (sec)

	Percentile [https://en.wikipedia.org/wiki/Percentile] for 95% durations

	Max (sec)

	Maximal [https://en.wikipedia.org/wiki/Maxima_and_minima] duration value

	Avg (sec)

	Average [https://en.wikipedia.org/wiki/Average] duration value

	Success

	Percent of successful runs. This is how many percent of this action runs
(number of runs is given in Count column) were successful.

	Count

	Number of actually run atomic actions. This can differ from
iterations count because some atomic actions do not start if
some exception is raised before in the workload runtime (for example in
previous atomic action).

StackedArea with durations per iteration

This chart shows load_duration and idle_duration
values per iteration. If there is only one iteration, then chart is useless so
it is hidden.

Idle duration

Sometimes workload does nothing for some reason (waiting for something or just
making a dummy load). This is achieved by calling time.sleep() and spent time
is called idle duration.

Load Profile

Load profile [https://en.wikipedia.org/wiki/Load_profile] chart shows number of iterations running in parallel for each
workload moment:

[image: ../_images/Report-Task-Load-profile.png]

Distribution

Pie chart shows percent of successful and failed iterations.

Histogram shows durations distribution with the following methods [https://en.wikipedia.org/wiki/Histogram] (selected
in dropdown list): Square Root Choice, Sturges Formula, Rise Rule

[image: ../_images/Report-Task-Distribution.png]

Tab «Details»

Atomic Action Durations

There is a StackedArea chart that shows atomic actions durations per iteration.
If there is only one iteration, then chart is useless so it is hidden.

[image: ../_images/Report-Task-Actions-durations.png]

Distribution

Distribution for atomic actions durations

Tab «Scenario Data»

This tab only appears if workload provides some custom output via method
Scenario.add_output().

Aggregated

This shows charts with data aggregated from all iterations.
This means that each X axis point represents an iteration, so each iteration
provided some values that are aggregated into charts or tables.

[image: ../_images/Report-Task-Scenario-Data-Aggregated.png]

Per iteration

Each iteration can create its own, complete charts and tables.

[image: ../_images/Report-Task-Scenario-Data-Per-iteration.png]

Tab «Failures»

Complete information about exceptions raised during the workload run

	Iteration

	Number of iteration where exception is occurred

	Exception type

	Type of raised Exception subclass

	Exception message

	Message delivered by the exception

Click on a row expands it with exception traceback.

[image: ../_images/Report-Task-Failures.png]

Tab «Input Task»

This shows JSON for input file which can be used to run current workload.

[image: ../_images/Report-Task-Subtask-configuration.png]

Trends Report

If same workload is run several times, some results of these runs can be
compared. Compared metrics are ssuccess rate (percent of successful iterations)
and statistics for durations.

How to generate trends report

Use command rally task trends with given tasks UUIDs and/or tasks results
JSON files and the name of desired output file.

Example:

$ rally task trends --tasks 6f63d9ec-eecd-4696-8e9c-2ba065c68535 a5737eba-a204-43d6-a262-d5ea4b0065da --out trends.html

What is an order of workload runs?

Workload run number in shown on charts X axis, the order of runs is exactly as
it comes from tasks data in the moment of report generation.

Trends overview

[image: ../_images/Report-Trends-Overview.png]

If workload has been actually run only once

That is obvious that it is not possible to have trend for a single value.
There should be at least two workload runs to make results comparison possible.
So in this case there is only a help message displayed.

[image: ../_images/Report-Trends-single-run.png]

Tab «Total»

Total durations

Shows workload load_duration statistics trends.

Total success rate

Shows trends for percent of successful iterations

[image: ../_images/Report-Trends-Total.png]

Tab «Atomic actions»

Statistics trends for atomic actions durations.
Charts are same as for total durations.

[image: ../_images/Report-Trends-Atomic-actions.png]

Tab «Configuration»

Here is a configuration JSON for current workload.

[image: ../_images/Report-Trends-Configuration.png]

CLI References

For more information regarding Rally Task Component CLI please proceed
to CLI reference

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Verification Component

Functional testing is a first step to ensuring that your product works as
expected and API covers all use-cases. Rally Verification Component is all
about this. It is not designed to generate a real big load (for this job we
have Task Component), but it should be enough to check that your
environment works by different tools (we call them
Verification).

	Verifiers
	What is it?

	Verifier statuses

	Verification statuses

	Known verifier types

	Verification reports
	HTML reports

	Plugins Reference for all out-of-the-box reporters

	Command Line Interface
	Category: verify

	HowTo
	HowTo add new reporting mechanism

	HowTo add support for new tool

	HowTo migrate from Verification component 0.7.0 to 0.8.0

Historical background

Tempest, OpenStack’s official test suite, is a powerful tool for running a set
of functional tests against an OpenStack cluster. Tempest automatically runs
against every patch in every project of OpenStack, which lets us avoid merging
changes that break functionality.

Unfortunately, it has limited opportunities to be used, to process its results,
etc. That is why we started Verification Component initiative a long time ago
(see a blog post [https://www.mirantis.com/blog/rally-openstack-tempest-testing-made-simpler/]
for more details, but be careful as all user interface is changed completely
since that time).

What is Verification Component and why do you need it?

The primary goal of Rally Product is to provide a simple way to do complex
things. As for functional testing, Verification Component includes interfaces
for:

	Managing things. Create an isolated virtual environment and install
verification tool there? Yes, we can do it! Clone tool from Git repositories?
Sure! Store several versions of one tool (you know, sometimes they are
incompatible, with different required packages and so on)? Of course!
In general, Verification Component allows to install, upgrade, reinstall,
configure your tool. You should not care about zillion options anymore Rally
will discover them via cloud UX and make the configuration file for you
automatically.

	Launching verifiers. Launchers of specific tools don't always contain all
required features, Rally team tries to fix this omission. Verification
Component supports some of them like expected failures, a list of tests to
skip, a list of tests to launch, re-running previous verification or just
failed tests from it and so on. Btw, all verification runs arguments are
stored in the database.

	Processing results. Rally DataBase stores all verifications and you can obtain unified (across different verifiers)
results at any time. You can find a verification run summary there, run
arguments which were used, error messages and etc. Comparison mechanism for
several verifications is available too. Verification reports can be generated
in several formats: HTML, JSON, JUnit-XML (see Verification reports
for more details). Also, reports mechanism is expendable and you can write
your own plugin for whatever system you want.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

Verifiers

	What is it?

	Verifier statuses

	Verification statuses

	Known verifier types

What is it?

Verifier Plugin is a compatibility layer between Rally and the specific tool
(such as Tempest) which runs tests. It implements features like installation,
configuration, upgrades, running, etc in terms of the tool. It is a driver in
other words.
It is a pluggable entity, which means that you can easily add support for
whatever tool you want (see HowTo add support for new tool page for
more information). Even more, you can deliver such plugin separately from Rally
itself, but we firmly recommend to push a change to Rally upstream (see
Contribute to Rally guide), so Rally core-team will able to review it and help
to improve.

Verifier is an instance of the Verifier Plugin. It is an installed tool.
For example, "Tempest" is a set of functional tests, it is Verifier Plugin
(we have a plugin for it). Installed Tempest 12.0 from
https://github.com/openstack/tempest in a virtual environment is the verifier.

Verifier is not aligned to any particular deployment like it was in the past,
you can use one verifier for testing unlimited number of deployments (each
deployment will have separate configuration files for the tool).

Verifier & Verifier Plugin are the main entities which Verification component
operates with. Another one is the verifications results.

Verifier statuses

All verifiers can be in next statuses:

	init - Initial state. It appears while you call rally verify
create-verifier command and installation step is not yet started.

	installing - Installation of the verifier is not a quick task. It is about
cloning tool, checking packages or installing virtual environments with all
required packages. This state indicates that this step is in the process.

	installed - It should be one of your favourite states. It means that
everything is ok and you can start verifying your cloud.

	updating - This state identifies the process of updating verifier (version,
source, packages, etc.).

	extending - The process of extending a verifier by its plugins.

	failed - Something went wrong while installation.

Verification statuses

	init - Initial state. It appears instantly after calling
rally verify start command before the actual run of verifier's tool.

	running - Identifies the process of execution tool.

	finished- Verification is finished without errors and failures.

	failed - Verification is finished, but there are some failed tests.

	crashed - Unexpected error had happened while running verification.

Known verifier types

Out of the box

You can execute command rally verify list-plugins locally to check
available verifiers in your environment.

Cut down from Global Plugins Reference page:

tempest

Tempest verifier.

Description:

Quote from official documentation:

This is a set of integration tests to be run against a live OpenStack
cluster. Tempest has batteries of tests for OpenStack API validation,
Scenarios, and other specific tests useful in validating an OpenStack
deployment.

Rally supports features listed below:

	cloning Tempest: repository and version can be specified

	installation: system-wide with checking existence of required
packages or in virtual environment

	configuration: options are discovered via OpenStack API, but you can
override them if you need

	running: pre-creating all required resources(i.e images, tenants,
etc), prepare arguments, launching Tempest, live-progress output

	results: all verifications are stored in db, you can built reports,
compare verification at whatever you want time.

Appeared in Rally 0.8.0 (actually, it appeared long time ago with first
revision of Verification Component, but 0.8.0 is mentioned since it is
first release after Verification Component redesign)

	Running arguments:

	
	concurrency: Number of processes to be used for launching tests. In case of 0 value, number of processes will be equal to number of CPU cores.

	load_list: a list of tests to launch.

	pattern: a regular expression of tests to launch.

	set: Name of predefined sets of tests. Known names: full, smoke, baremetal, clustering, compute, database, data_processing, identity, image, messaging, network, object_storage, orchestration, telemetry, volume, scenario

	skip_list: a list of tests to skip (actually, it is a dict where keys are names of tests, values are reasons).

	xfail_list: a list of tests that are expected to fail (actually, it is a dict where keys are names of tests, values are reasons).

	Installation arguments:

	
	system_wide: Whether or not to use the system-wide environment for verifier instead of a virtual environment. Defaults to False.

	version: Branch, tag or commit ID to checkout before verifier installation. Defaults to master

	source: Path or URL to the repo to clone verifier from. Default to https://git.openstack.org/openstack/tempest

Namespace: openstack

Module:
rally.plugins.openstack.verification.tempest.manager [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/verification/tempest/manager.py]

Third-party

Nothing here yet.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

Verification reports

Rally stores all verifications results in its DataBase so that you can access
and process results at any time. No matter what verifier you use, results will
be stored in a unified way and reports will be unified too.

We support several types of reports out of the
box: HTML, HTML-Static, JSON, JUnit-XML; but our
reporting system is pluggable so that you can write your own plugin to build
some specific reports or to export results to the specific system (see
HowTo add new reporting mechanism for more details`).

	HTML reports
	Filtering results

	Tests Tags

	Tracebacks & Reasons

	Plugins Reference for all out-of-the-box reporters
	html

	html-static

	json

	junit-xml

HTML reports

HTML report is the most convenient type of reports. It includes as much as
possible useful information about Verifications.

Here is an example of HTML report for 3 verifications.
It was generated by next command:

$ rally verify report --uuid <uuid-1> <uuid-2> <uuid-3> --type html \
 --to ./report.html

[image: ../_images/Report-Verify-for-4-Verifications.png]
The report consists of two tables.

First one is a summary table. It includes base information about
verifications: UUIDs; numbers of tests; when they were launched; statuses; etc.
Also, you can find detailed information grouped by tests statuses at the right
part of the table.

If the size (height) of the summary table seems too large for you and hinders
to see more tests results, you can push "Toggle Header" button.

The second table contains actual verifications results. They are grouped by
tests names. The result of the test for particular verification overpainted by
one of the next colours:

	Red - It means that test has "failed" status

	Orange - It is "unexpected success". Most of the parsers calculates it just
like failure

	Green - Everything is ok. The test succeeded.

	Yellow - It is "expected failure".

	Light Blue - Test is skipped. It is not good and not bad

Several verifications comparison is a default embedded behaviour of reports.
The difference between verifications is displayed in brackets after actual
test duration. Sign + means that current result is bigger that standard by
the number going after the sign. Sign - is an opposite to +. Please,
note that all diffs are comparisons with the first verification in a row.

Filtering results

You can filter tests by setting or removing a mark from check box of the
particular status column of the summary table.

[image: ../_images/Report-Verify-filter-by-status.png]

Tests Tags

Some of the tests tools support tests tagging. It can be used for setting
unique IDs, groups, etc. Usually, such tags are included in test name. It is
inconvenient and Rally stores tags separately. By default they are hidden, but
if you push "Toggle tags" button, they will be displayed under tests names.

[image: ../_images/Report-Verify-toggle-tags.png]

Tracebacks & Reasons

Tests with "failed" and "expected failure" statuses have tracebacks of
failures. Tests with "skipped", "expected failure", "unexpected success" status
has "reason" of events. By default, both tracebacks and reasons are hidden,
but you can show them by clicking on the appropriate test.

[image: ../_images/Report-Verify-tracebacks.png]
[image: verification/../images/Report-Verify-xfail.png]

Plugins Reference for all out-of-the-box reporters

html

Generates verification report in HTML format.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

html-static

Generates verification report in HTML format with embedded JS/CSS.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

json

Generates verification report in JSON format.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

junit-xml

Generates verification report in JUnit-XML format.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

Command Line Interface

Cut down from Global Command Line Interface

	Category: verify
	rally verify add-verifier-ext

	rally verify configure-verifier

	rally verify create-verifier

	rally verify delete

	rally verify delete-verifier

	rally verify delete-verifier-ext

	rally verify import

	rally verify list

	rally verify list-plugins

	rally verify list-verifier-exts

	rally verify list-verifier-tests

	rally verify list-verifiers

	rally verify report

	rally verify rerun

	rally verify show

	rally verify show-verifier

	rally verify start

	rally verify update-verifier

	rally verify use

	rally verify use-verifier

Category: verify

Verify an OpenStack cloud via a verifier.

rally verify add-verifier-ext

Add a verifier extension.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--source <source> (ref)

Path or URL to the repo to clone verifier extension from.

Type: str

Default: None

--version <version> (ref)

Branch, tag or commit ID to checkout before installation of the verifier extension (the 'master' branch is used by default).

Type: str

Default: None

--extra-settings <extra_settings> (ref)

Extra installation settings for verifier extension.

Type: str

Default: None

rally verify configure-verifier

Configure a verifier for a specific deployment.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--reconfigure (ref)

Reconfigure verifier.

--extend <path/json/yaml> (ref)

Extend verifier configuration with extra options. If options are already present, the given ones will override them. Can be a path to a regular config file or just a json/yaml.

Type: str

Default: None

--override <path> (ref)

Override verifier configuration by another one from a given source.

Type: str

Default: None

--show (ref)

Show verifier configuration.

rally verify create-verifier

Create a verifier.

Command arguments:

--name <name> (ref)

Verifier name (for example, 'My verifier').

Type: str

--type <type> (ref)

Verifier plugin name. HINT: You can list all verifier plugins, executing command rally verify list-plugins.

Type: str

--namespace <name> (ref)

Verifier plugin namespace. Should be specified in case of two verifier plugins with equal names but in different namespaces.

Type: str

Default:

--source <source> (ref)

Path or URL to the repo to clone verifier from.

Type: str

Default: None

--version <version> (ref)

Branch, tag or commit ID to checkout before verifier installation (the 'master' branch is used by default).

Type: str

Default: master

--system-wide (ref)

Use the system-wide environment for verifier instead of a virtual environment.

--extra-settings <extra_settings> (ref)

Extra installation settings for verifier.

Type: str

Default: None

--no-use (ref)

Not to set the created verifier as the default verifier for future operations.

rally verify delete

Delete a verification or a few verifications.

Command arguments:

--uuid <uuid> (ref)

UUIDs of verifications. HINT: You can list all verifications, executing command rally verify list.

Type: str

rally verify delete-verifier

Delete a verifier.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. If specified, only the deployment-specific data will be deleted for verifier. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--force (ref)

Delete all stored verifications of the specified verifier. If a deployment specified, only verifications of this deployment will be deleted. Use this argument carefully! You can delete verifications that may be important to you.

rally verify delete-verifier-ext

Delete a verifier extension.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--name <name> (ref)

Verifier extension name.

Type: str

Default: None

rally verify import

Import results of a test run into the Rally database.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--file <path> (ref)

File to import test results from.

Type: str

Default: None

--run-args <run_args> (ref)

Arguments that might be used when running tests. For example, '{concurrency: 2, pattern: set=identity}'.

Type: str

Default: None

--no-use (ref)

Not to set the created verification as the default verification for future operations.

rally verify list

List all verifications.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--tag <tag> (ref)

Tags to filter verifications by.

Type: str

Default: None

--status <status> (ref)

Status to filter verifications by.

Type: str

Default: None

rally verify list-plugins

List all plugins for verifiers management.

Command arguments:

--namespace <name> (ref)

Namespace name (for example, openstack).

Type: str

Default: None

rally verify list-verifier-exts

List all verifier extensions.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

rally verify list-verifier-tests

List all verifier tests.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--pattern <pattern> (ref)

Pattern which will be used for matching. Can be a regexp or a verifier-specific entity (for example, in case of Tempest you can specify 'set=smoke'.

Type: str

Default:

rally verify list-verifiers

List all verifiers.

Command arguments:

--status <status> (ref)

Status to filter verifiers by.

Type: str

Default: None

rally verify report

Generate a report for a verification or a few verifications.

Command arguments:

--uuid <uuid> (ref)

UUIDs of verifications. HINT: You can list all verifications, executing command rally verify list.

Type: str

Default: None

--type <type> (ref)

Report type (Defaults to JSON). Out-of-the-box types: HTML, HTML-Static, JSON, JUnit-XML. HINT: You can list all types, executing rally plugin list --plugin-base VerificationReporter command.

Type: str

Default: None

--to <dest> (ref)

Report destination. Can be a path to a file (in case of HTML, JSON types) to save the report to or a connection string. It depends on report type.

Type: str

Default: None

--open (ref)

Open the output file in a browser.

rally verify rerun

Rerun tests from a verification for a specific deployment.

Command arguments:

--uuid <uuid> (ref)

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--failed (ref)

Rerun only failed tests.

rally verify show

Show detailed information about a verification.

Command arguments:

--uuid <uuid> (ref)

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

Type: str

Default: None

--sort-by <query> (ref)

Sort tests by 'name', 'duration' or 'status'.

Type: str

Default: name

--detailed (ref)

Show verification details such as run arguments and errors of failed tests.

rally verify show-verifier

Show detailed information about a verifier.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

rally verify start

Start a verification (run verifier tests).

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--deployment-id <id> (ref)

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

Type: str

--tag <tag> (ref)

Mark verification with a tag or a few tags.

Type: str

Default: None

--pattern <pattern> (ref)

Pattern which will be used for running tests. Can be a regexp or a verifier-specific entity (for example, in case of Tempest you can specify 'set=smoke'.

Type: str

Default: None

--concurrency <N> (ref)

How many processes to use to run verifier tests. The default value (0) auto-detects your CPU count.

Type: int

Default: 0

--load-list <path> (ref)

Path to a file with a list of tests to run.

Type: str

Default: None

--skip-list <path> (ref)

Path to a file with a list of tests to skip. Format: json or yaml like a dictionary where keys are test names and values are reasons.

Type: str

Default: None

--xfail-list <path> (ref)

Path to a file with a list of tests that will be considered as expected failures. Format: json or yaml like a dictionary where keys are test names and values are reasons.

Type: str

Default: None

--detailed (ref)

Show verification details such as errors of failed tests.

--no-use (ref)

Not to set the finished verification as the default verification for future operations.

rally verify update-verifier

Update a verifier.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

Default: None

--update-venv (ref)

Update the virtual environment for verifier.

--version <version> (ref)

Branch, tag or commit ID to checkout. HINT: Specify the same version to pull the latest repo code.

Type: str

Default: None

--system-wide (ref)

Switch to using the system-wide environment.

--no-system-wide (ref)

Switch to using the virtual environment. If the virtual environment doesn't exist, it will be created.

rally verify use

Choose a verification to use for the future operations.

Command arguments:

--uuid <uuid> (ref)

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

Type: str

rally verify use-verifier

Choose a verifier to use for the future operations.

Command arguments:

--id <id> (ref)

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

Type: str

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

HowTo

	HowTo add new reporting mechanism

	HowTo add support for new tool

	HowTo migrate from Verification component 0.7.0 to 0.8.0

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

 	HowTo

HowTo add new reporting mechanism

Reporting mechanism for verifications is pluggable. Custom plugins can be used
for custom output formats or for exporting results to external systems.

We hardly recommend to read Rally Plugins page to understand how do Rally
Plugins work.

	Spec

	Example of custom JSON Reporter

Spec

All reporters should inherit
rally.verification.reporter.VerificationReporter and implement all
abstract methods. Here you can find its interface:

	
class rally.verification.reporter.VerificationReporter(verifications, output_destination)[source]

	Base class for all reporters for verifications.

	
base_ref

	alias of VerificationReporter

	
generate()[source]

	Generate report

	Returns:	a dict with 3 optional elements:
	key "files" with a dictionary of files to save on disk.
keys are paths, values are contents;

	key "print" - data to print at CLI level

	key "open" - path to file which should be open in case of
--open flag

	
static make(reporter_cls, verifications, output_destination)[source]

	Initialize reporter, generate and validate report.

It is a base method which is called from API layer. It cannot be
overridden. Do not even try! :)

	Parameters:	
	reporter_cls -- class of VerificationReporter to be used

	verifications -- list of results to generate report for

	output_destination -- destination of report

	
classmethod validate(output_destination)[source]

	Validate destination of report.

	Parameters:	output_destination -- Destination of report

Example of custom JSON Reporter

Basically, you need to implement only two methods "validate" and "generate".

Method "validate" should check that destination of the report is right.
Method "generate" should build a report or export results somewhere; actually,
it is up to you what it should do but return format is strict, see spec
section for what it can return.

import json

from rally.verification import reporter

@reporter.configure("summary-in-json")
class SummaryInJsonReporter(reporter.VerificationReporter):
 """Store summary of verification(s) in JSON format"""

 # ISO 8601
 TIME_FORMAT = "%Y-%m-%dT%H:%M:%S%z"

 @classmethod
 def validate(cls, output_destination):
 # we do not have any restrictions for destination, so nothing to
 # check
 pass

 def generate(self):
 report = {}

 for v in self.verifications:
 report[v.uuid] = {
 "started_at": v.created_at.strftime(self.TIME_FORMAT),
 "finished_at": v.updated_at.strftime(self.TIME_FORMAT),
 "status": v.status,
 "run_args": v.run_args,
 "tests_count": v.tests_count,
 "tests_duration": v.tests_duration,
 "skipped": v.skipped,
 "success": v.success,
 "expected_failures": v.expected_failures,
 "unexpected_success": v.unexpected_success,
 "failures": v.failures,
 # v.tests includes all information about launched tests,
 # but for simplification of this fake reporters, let's
 # save just names
 "launched_tests": [test["name"]
 for test in v.tests.values()]
 }

 raw_report = json.dumps(report, indent=4)

 if self.output_destination:
 # In case of output_destination existence report will be saved
 # to hard drive and there is nothing to print to stdout, so
 # "print" key is not used
 return {"files": {self.output_destination: raw_report},
 "open": self.output_destination}
 else:
 # it is something that will be print at CLI layer.
 return {"print": raw_report}

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

 	HowTo

HowTo add support for new tool

First of all, you should start from the reading of Rally Plugins page.
After you learned basic things about Rally plugin mechanism, let's move to
Verifier interface itself.

	Spec

	Example of Fake Verifier Manager

Spec

All verifiers plugins should inherit
rally.verification.manager.VerifierManager and implement all abstract
methods. Here you can find its interface:

	
class rally.verification.manager.VerifierManager(verifier)[source]

	Verifier base class.

This class provides an interface for operating specific tool.

	
configure(extra_options=None)[source]

	Configure a verifier.

	Parameters:	extra_options -- a dictionary with external verifier specific
options for configuration.

	Raises:	NotImplementedError -- This feature is verifier-specific, so you
should override this method in your plugin if it supports
configuration

	
extend_configuration(extra_options)[source]

	Extend verifier configuration with new options.

	Parameters:	extra_options -- Options to be used for extending configuration

	Raises:	NotImplementedError -- This feature is verifier-specific, so you
should override this method in your plugin if it supports
configuration

	
get_configuration()[source]

	Get verifier configuration (e.g., the config file content).

	
install()[source]

	Clone and install a verifier.

	
install_extension(source, version=None, extra_settings=None)[source]

	Install a verifier extension.

	Parameters:	
	source -- Path or URL to the repo to clone verifier extension from

	version -- Branch, tag or commit ID to checkout before verifier
extension installation

	extra_settings -- Extra installation settings for verifier
extension

	Raises:	NotImplementedError -- This feature is verifier-specific, so you
should override this method in your plugin if it supports
extensions

	
is_configured()[source]

	Check whether a verifier is configured or not.

	
list_extensions()[source]

	List all verifier extensions.

	
list_tests(pattern='')[source]

	List all verifier tests.

	Parameters:	pattern -- Filter tests by given pattern

	
override_configuration(new_configuration)[source]

	Override verifier configuration.

	Parameters:	new_configuration -- Content which should be used while overriding
existing configuration

	Raises:	NotImplementedError -- This feature is verifier-specific, so you
should override this method in your plugin if it supports
configuration

	
run(context)[source]

	Run verifier tests.

Verification Component API expects that this method should return an
object. There is no special class, you do it as you want, but it should
have the following properties:

	<object>.totals = {

	"tests_count": <total tests count>,
"tests_duration": <total tests duration>,
"failures": <total count of failed tests>,
"skipped": <total count of skipped tests>,
"success": <total count of successful tests>,
"unexpected_success": <total count of unexpected successful tests>,
"expected_failures": <total count of expected failed tests>

}

	<object>.tests = {

	
	<test_id>: {

	"status": <test status>,
"name": <test name>,
"duration": <test duration>,
"reason": <reason>, # optional
"traceback": <traceback> # optional

}

	
uninstall(full=False)[source]

	Uninstall a verifier.

	Parameters:	full -- If False (default behaviour), only deployment-specific
data will be removed

	
uninstall_extension(name)[source]

	Uninstall a verifier extension.

	Parameters:	name -- Name of extension to uninstall

	Raises:	NotImplementedError -- This feature is verifier-specific, so you
should override this method in your plugin if it supports
extensions

	
validate_args(args)[source]

	Validate given arguments to be used for running verification.

	Parameters:	args -- A dict of arguments with values

Example of Fake Verifier Manager

FakeTool is a tool which doesn't require configuration and installation.

import random
import re

from rally.verification import manager

Verification component expects that method "run" of verifier returns
object. Class Result is a simple wrapper for two expected properties.
class Result(object):
 def __init__(self, totals, tests):
 self.totals = totals
 self.tests = tests

@manager.configure("fake-tool", default_repo="https://example.com")
class FakeTool(manager.VerifierManager):
 """Fake Tool \o/"""

 TESTS = ["fake_tool.tests.bar.FatalityTestCase.test_one",
 "fake_tool.tests.bar.FatalityTestCase.test_two",
 "fake_tool.tests.bar.FatalityTestCase.test_three",
 "fake_tool.tests.bar.FatalityTestCase.test_four",
 "fake_tool.tests.foo.MegaTestCase.test_one",
 "fake_tool.tests.foo.MegaTestCase.test_two",
 "fake_tool.tests.foo.MegaTestCase.test_three",
 "fake_tool.tests.foo.MegaTestCase.test_four"]

 # This fake verifier doesn't launch anything, just returns random
 # results, so let's override parent methods to avoid redundant
 # clonning repo, checking packages and so on.

 def install(self):
 pass

 def uninstall(self, full=False):
 pass

 # Each tool, which supports configuration, has the own mechanism
 # for that task. Writing unified method is impossible. That is why
 # `VerificationManager` implements the case when the tool doesn't
 # need (doesn't support) configuration at all. Such behaviour is
 # ideal for FakeTool, since we do not need to change anything :)

 # Let's implement method `run` to return random data.
 def run(self, context):
 totals = {"tests_count": len(self.TESTS),
 "tests_duration": 0,
 "failures": 0,
 "skipped": 0,
 "success": 0,
 "unexpected_success": 0,
 "expected_failures": 0}
 tests = {}
 for name in self.TESTS:
 duration = random.randint(0, 10000)/100.
 totals["tests_duration"] += duration
 test = {"name": name,
 "status": random.choice(["success", "fail"]),
 "duration": "%s" % duration}
 if test["status"] == "fail":
 test["traceback"] = "Ooooppps"
 totals["failures"] += 1
 else:
 totals["success"] += 1
 tests[name] = test
 return Result(totals, tests=tests)

 def list_tests(self, pattern=""):
 return [name for name in self.TESTS if re.match(pattern, name)]

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Verification Component

 	HowTo

HowTo migrate from Verification component 0.7.0 to 0.8.0

Note

This document describes migration process from 0.7.0 to 0.8.0 Rally
version. You can apply this instruction for migration to later versions,
but check all references and release notes before trying to do it.

Verification Component was introduced long time ago even before the first Rally
release. It started as a small helper thing but became a big powerful tool.
Since it was not designed to all features that were implemented there later,
it contained a lot of workarounds and hacks.

New Verification Component, which we are happy to introduce, should fix all
architecture issues and improve user-experience. Unfortunately, fixing all
those obsolete architecture decisions could not be done in a
backward-compatible way, or it would produce much more workarounds. That is why
we decided to redesign the whole component in a clear way - remove old code and
write a new one from scratch.

Migration to New Verification Component should be simple and do not take too
much time. You can find description of made changes below.

	Reports

	Verification statuses

	Command Line Interface
	Installing verifier

	Re-install verifier aka update

	Uninstall

	Installation extensions

	Uninstall extensions

	List extensions

	Discover available tests

	Configuring

	Show config

	Running verification

	Show verification result

	Listing all verifications

	Importing results

	Building reports

	The End

Reports

We completely reworked verification reports and merged comparison to main
report. Now you can build one report for multiple number of verifications.

For more details follow Verification reports

Verification statuses

	Old Status
	New Status
	Description

	init
	init
	Initial state. It appears instantly after calling
rally verify start command before the actual
run of verifier's tool.

	running
	
	It was used right after checking status of
verifier. It is redundant in terms of new design.

	verifying
	running
	Identifies the process of tool execution.

	finished
	finished
	Previously, "finished" state was used for an
identification of just finished verification. By
"finished" meant that verification has any test
result. Now it means that verification was
executed and doesn't have failures, unexpected
success or any kind of errors.

	failed
	Old purpose is an identification of "errors",
situations when results are empty. The right use
is an identification of finished verification
with tests in "failed" and "uxsuccess"
(unexpected success) statuses.

	failed
	crashed
	Something went wrong while launching verification.

The latest information about verification statuses you can find at
Verification statuses.

Command Line Interface

You can find the latest information about Verification Component CLI here -
Command Line Interface.

Installing verifier

Command for Rally 0.7.0 - rally verify install [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-install]

$ rally verify install --deployment <uuid> --source <url> --version <vers> \
 --system-wide

Command for Rally 0.8.0:

$ rally verify create-verifier --type "tempest" --source <url> \
 --version <version> --system-wide --name <name>

Here you can find several important improvements:

	Rally team introduced new entity - Verifiers. Verifier stores all
information about installed tool (i.e., source, version, system-wide) in a
database. You do not need to transmit the same arguments into
all rally verify commands as it was previously with --system-wide
flag.

	You can use particular verifier for multiple deployments. --deployment
flag moved to rally verify start command. Also, you can run it
simultaneously (checking in parallel different sets, different cloud, etc)

	Verification Component can use not only Tempest for verifying system. Check
Known verifier types for full list of supported tools.

	You can have unlimited number of verifiers.

Re-install verifier aka update

Command for Rally 0.7.0 - rally verify reinstall [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-reinstall]

$ rally verify reinstall --deployment <uuid> --source <url> --version <vers> \
 --system-wide

Command for Rally 0.8.0:

$ rally verify update-verifier --id <id> --source <url> --version <vers> \
 --system-wide --no-system-wide --update-venv

Changes:

	rally verify update-verifier doesn't require deployment id

	You can switch between usage of system-wide installation and virtual
environment.

	You can update just virtual environment without cloning verifier code again

Uninstall

Command for Rally 0.7.0 - rally verify uninstall [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-uninstall]

$ rally verify uninstall --deployment <uuid>

Command for Rally 0.8.0:

$ rally verify delete-verifier --id <id> --deployment-id <id> --force

Changes:

	As it was mentioned before, Verifier doesn't have an alignment to any
particular deployment, so deployment argument is optional now.
If --deployment-id argument is specified only deployment specific data will
be removed (i.e, configurations).

	New --force flag for removing all verifications results for that verifier.

Installation extensions

Command for Rally 0.7.0 - rally verify installplugin [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-installplugin]

$ rally verify installplugin --deployment <uuid> --source <url> \
 --version <vers> --system-wide

Command for Rally 0.8.0:

$ rally verify add-verifier-ext --id <id> --source <url> --version <vers> \
 --extra-settings <data>

Changes:

	--system-wide flag is removed. Rally checks the verifier information to
identify where to install the extension - in a system-side way or use
virtual environment.

	New --extra-settings flag. In case of Tempest, it is redundant, but for
other verifiers allows to transmit some extra installation settings for
verifier extension.

Uninstall extensions

Command for Rally 0.7.0 - rally verify uninstallplugin [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-uninstallplugin]

$ rally verify uninstallplugin --deployment <uuid> --repo-name <repo_name> \
 --system-wide

Command for Rally 0.8.0:

$ rally verify delete-verifier-ext --id <id> --name <name>

Changes:

	It is one more place where you do not need to pass --system-wide flag
anymore.

	--deployment flag is gone.

	--repo-name is renamed to just --name.

List extensions

Command for Rally 0.7.0 - rally verify listplugins [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-listplugins]

$ rally verify listplugins --deployment <uuid> --system-wide

Command for Rally 0.8.0:

$ rally verify list-verifier-exts --id <id>

Changes:

	No need to specify --system-wide flag.

	--deployment flag is gone.

Discover available tests

Command for Rally 0.7.0 - rally verify discover [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-discover]

$ rally verify discover --deployment <uuid> --system-wide --pattern <pattern>

Command for Rally 0.8.0:

$ rally verify list-verifier-tests --id <id> --pattern <pattern>

Changes:

	No need to specify --system-wide flag.

	--deployment flag is gone.

Configuring

Commands for Rally 0.7.0:

	The command for generating configs rally verify genconfig [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-genconfig]

$ rally verify genconfig --deployment <uuid> --tempest-config <path> \
 --add-options <path> --override

	The command for showing configs rally verify showconfig [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-showconfig]

$ rally verify showconfig --deployment <uuid>

Command for Rally 0.8.0:

$ rally verify configure-verifier --id <id> --deployment-id <uuid> \
 --extend <path/json/yaml> --override <path> --reconfigure --show

Changes:

	The argument --override replaces old --tempest-config name. First
of all, argument name "override" is a unified word without alignment to any
tool. Also, it describes in the best way the meaning of the action: use
client specified configuration file.

	The argument --extend replaces old --add-options. It accepts a path
to config in INI format or JSON/YAML string. In future, it will be extended
with the ability to specify a path to JSON/YAML file.

	The argument --reconfigure replaces old --override. It means that
existing file will be ignored and new one will be used/created.

	If the argument --show is specified, a configuration of verifier will be
displayed at the end of command execution.

Note

We do not have a separate command for showing configurations
anymore. rally verify configure-verifier --show shows an existing
configuration if it exists and --reconfigure argument is not specified

Show config

Command for Rally 0.7.0 - rally verify showconfig [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-showconfig]

$ rally verify showconfig --deployment <uuid>

Command for Rally 0.8.0:

$ rally verify configure-verifier --id <id> --deployment-id <uuid> --show

Changes:

We do not have a separate command for that task.
rally verify configure-verifier --show shows an existing configuration
(if it exists) if --reconfigure argument is not specified.

Running verification

Command for Rally 0.7.0 - rally verify start [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-start]

$ rally verify start --deployment <uuid> --set <set_name> --regex <regex> \
 --load-list <path> --tests-file <path> --skip-list <path> \
 --tempest-config <path> --xfail-list <path> --system-wide \
 --concurrency <N> --failing --no-use

Command for Rally 0.8.0:

$ rally verify start --id <id> --deployment-id <uuid> --pattern <pattern> \
 --load-list <path> --skip-list <path> --xfail-list <path> \
 --concurrency <N> --no-use --detailed

Changes:

	You need to pass verifier id

	Arguments --set and --regex are merged in the new model to single
--pattern argument. Name of tests set should be specified like
--pattern set=<set_name>. It was done to provide a way for each
verifier to support custom arguments.

	The argument --tests-file was deprecated in Rally 0.6.0 and
we are ready to remove it.

	Arguments --skip-list and --xfail-list accept path to file in
JSON/YAML format. Content should be a dictionary, where keys are tests
names (full name with id and tags) and values are reasons.

	The argument --tempest-config is gone. Use
rally verify configure-verifier --id <id> --deployment-id <uuid>
--override <path> instead.

	The argument --system-wide is gone like in most of other commands.

	In case of specified --detailed arguments, traces of failed tests will
be displayed (default behaviour in old verification design)

Show verification result

Commands for Rally 0.7.0:

	The command for showing results of verification rally verify show [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-show]

$ rally verify show --uuid <uuid> --sort-by <query> --detailed

	Separate command which calls rally verify show with hardcoded
--detailed flag rally verify showconfig [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-detailed]

$ rally verify detailed --uuid <uuid> --sort-by <query>

Command for Rally 0.8.0:

$ rally verify show --uuid <uuid> --sort-by <query> --detailed

Changes:

	Redundant rally verify detailed command is removed

	Sorting tests via --sort-by argument is extended to name/duration/status

Listing all verifications

Command for Rally 0.7.0 - rally verify list [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-list]

$ rally verify list

Command for Rally 0.8.0:

$ rally verify list --id <id> --deployment-id <id> --status <status>

Changes:

You can filter verifications by verifiers, by deployments and results
statuses.

Importing results

Command for Rally 0.7.0 - rally verify import [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-import]

$ rally verify import --deployment <uuid> --set <set_name> --file <path> --no-use

Command for Rally 0.8.0:

$ rally verify import --id <id> --deployment-id <uuid> --file <path> \
 --run-args <run_args> --no-use

Changes:

	You need to specify verifier to import results for.

	The argument --set is merged into unified --run-args.

Building reports

Commands for Rally 0.7.0:

	The command for building HTML/JSON reports of verification
rally verify results [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-results]

$ rally verify results --uuid <uuid> --html --json --output-file <path>

	The command for comparison two verifications rally verify compare [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-verify-compare]

$ rally verify compare --uuid-1 <uuid_1> --uuid-2 <uuid_2> --csv --html \
 --json --output-file <output_file> --threshold <threshold>

Command for Rally 0.8.0:

$ rally verify report --uuid <uuid> --type <type> --to <destination> --open

Changes:

	Building reports becomes pluggable. You can extend reporters types.
See Verification reports for more details.

	The argument --type expects type of report (HTML/JSON). There are no
more separate arguments for each report type.

Hint

You can list all supported types, executing rally plugin list
--plugin-base VerificationReporter command.

	Reports are not aligned to only local types, so the argument --to
replaces --output-file. In case of HTML/JSON reports, it can include a
path to the local file like it was previously or URL to some external system
with credentials like https://username:password@example.com:777.

	The comparison is embedded into main reports and it is not limited by two
verifications results. There are no reasons for the separate command for
that task.

The End

Have nice verifications!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Rally Plugins

Rally has a plugin oriented architecture - in other words Rally team is trying
to make all places of code pluggable. Such architecture leads to the big amount
of plugins. Plugins Reference contains a full list of all official Rally
plugins with detailed descriptions.

	Plugins Reference

How plugins work

Rally provides an opportunity to create and use a custom benchmark
scenario, runner, SLA, deployment or context as a plugin:

[image: ../_images/Rally-Plugins.png]

Placement

Plugins can be quickly written and used, with no need to contribute
them to the actual Rally code. Just place a Python module with your
plugin class into the /opt/rally/plugins or ~/.rally/plugins
directory (or its subdirectories), and it will be
automatically loaded. Additional paths can be specified with the
--plugin-paths argument, or with the RALLY_PLUGIN_PATHS
environment variable, both of which accept comma-delimited
lists. Both --plugin-paths and RALLY_PLUGIN_PATHS can list
either plugin module files, or directories containing plugins. For
instance, both of these are valid:

rally --plugin-paths /rally/plugins ...
rally --plugin-paths /rally/plugins/foo.py,/rally/plugins/bar.py ...

You can also use a script unpack_plugins_samples.sh from
samples/plugins which will automatically create the
~/.rally/plugins directory.

How to create a plugin

To create your own plugin you need to inherit your plugin class from
plugin.Plugin class or its subclasses. Also you need to decorate your class
with rally.task.scenario.configure

from rally.task import scenario

@scenario.configure(name="my_new_plugin_name")
class MyNewPlugin(plugin.Plugin):
 pass

	Context as a plugin

	Hooks. Hook trigger plugins

	Scenario runner as a plugin

	Scenario as a plugin

	SLA as a plugin

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally Plugins

Plugins Reference

	Deployment
	Engines

	Provider Factories

	Task Component
	Charts

	Contexts

	Exporters

	Hooks

	SLAs

	Scenarios

	Scenario Runners

	Triggers

	Verification Component
	Verification Reporters

	Verifier Contexts

	Verifier Managers

Deployment

Engines

DevstackEngine [Engine]

Deploy Devstack cloud.

Sample configuration:

{
 "type": "DevstackEngine",
 "devstack_repo": "https://example.com/devstack/",
 "local_conf": {
 "ADMIN_PASSWORD": "secret"
 },
 "provider": {
 "type": "ExistingServers",
 "credentials": [{"user": "root", "host": "10.2.0.8"}]
 }
}

Namespace: default

Module:
rally.deployment.engines.devstack [https://github.com/openstack/rally/blob/master/rally/deployment/engines/devstack.py]

ExistingCloud [Engine]

Just use an existing OpenStack deployment without deploying anything.

To use ExistingCloud, you should put credential information to the config:

{
 "type": "ExistingCloud",
 "auth_url": "http://localhost:5000/v2.0/",
 "region_name": "RegionOne",
 "endpoint_type": "public",
 "admin": {
 "username": "admin",
 "password": "password",
 "tenant_name": "demo"
 },
 "https_insecure": False,
 "https_cacert": "",
}

Or, using keystone v3 API endpoint:

{
 "type": "ExistingCloud",
 "auth_url": "http://localhost:5000/v3/",
 "region_name": "RegionOne",
 "endpoint_type": "public",
 "admin": {
 "username": "admin",
 "password": "admin",
 "user_domain_name": "admin",
 "project_name": "admin",
 "project_domain_name": "admin",
 },
 "https_insecure": False,
 "https_cacert": "",
}

To specify extra options use can use special "extra" parameter:

{
 "type": "ExistingCloud",
 "auth_url": "http://localhost:5000/v2.0/",
 "region_name": "RegionOne",
 "endpoint_type": "public",
 "admin": {
 "username": "admin",
 "password": "password",
 "tenant_name": "demo"
 },
 "https_insecure": False,
 "https_cacert": "",
 "extra": {"some_var": "some_value"}
}

Namespace: default

Module:
rally.deployment.engines.existing [https://github.com/openstack/rally/blob/master/rally/deployment/engines/existing.py]

LxcEngine [Engine]

Deploy with other engines in lxc containers.

Sample configuration:

{
 "type": "LxcEngine",
 "provider": {
 "type": "DummyProvider",
 "credentials": [{"user": "root", "host": "example.net"}]
 },
 "distribution": "ubuntu",
 "release": "raring",
 "tunnel_to": ["10.10.10.10", "10.10.10.11"],
 "start_lxc_network": "10.1.1.0/24",
 "container_name_prefix": "devstack-node",
 "containers_per_host": 16,
 "start_script": "~/start.sh",
 "engine": { ... }
}

Namespace: default

Module:
rally.deployment.engines.lxc [https://github.com/openstack/rally/blob/master/rally/deployment/engines/lxc.py]

MultihostEngine [Engine]

Deploy multihost cloud with existing engines.

Sample configuration:

{
 "type": "MultihostEngine",
 "controller": {
 "type": "DevstackEngine",
 "provider": {
 "type": "DummyProvider"
 }
 },
 "nodes": [
 {"type": "Engine1", "config": "Config1"},
 {"type": "Engine2", "config": "Config2"},
 {"type": "Engine3", "config": "Config3"},
]
}

If {controller_ip} is specified in configuration values, it will be
replaced with controller address taken from credential returned by
controller engine:

...
"nodes": [
 {
 "type": "DevstackEngine",
 "local_conf": {
 "GLANCE_HOSTPORT": "{controller_ip}:9292",
...

Namespace: default

Module:
rally.deployment.engines.multihost [https://github.com/openstack/rally/blob/master/rally/deployment/engines/multihost.py]

Provider Factories

CobblerProvider [Provider Factory]

Creates servers via PXE boot from given cobbler selector.

Cobbler selector may contain a combination of fields
to select a number of system. It's user responsibility to provide selector
which selects something. Since cobbler stores servers password encrypted
the user needs to specify it configuration. All servers selected must have
the same password.

Sample configuration:

{
 "type": "CobblerProvider",
 "host": "172.29.74.8",
 "user": "cobbler",
 "password": "cobbler",
 "system_password": "password"
 "selector": {"profile": "cobbler_profile_name", "owners": "user1"}
}

Namespace: default

Module:
rally.deployment.serverprovider.providers.cobbler [https://github.com/openstack/rally/blob/master/rally/deployment/serverprovider/providers/cobbler.py]

ExistingServers [Provider Factory]

Just return endpoints from its own configuration.

Sample configuration:

{
 "type": "ExistingServers",
 "credentials": [{"user": "root", "host": "localhost"}]
}

Namespace: default

Module:
rally.deployment.serverprovider.providers.existing [https://github.com/openstack/rally/blob/master/rally/deployment/serverprovider/providers/existing.py]

LxcProvider [Provider Factory]

Provide lxc container(s) on given host.

Sample configuration:

{
 "type": "LxcProvider",
 "distribution": "ubuntu",
 "start_lxc_network": "10.1.1.0/24",
 "containers_per_host": 32,
 "tunnel_to": ["10.10.10.10"],
 "forward_ssh": false,
 "container_name_prefix": "rally-multinode-02",
 "host_provider": {
 "type": "ExistingServers",
 "credentials": [{"user": "root", "host": "host.net"}]
 }
}

Namespace: default

Module:
rally.deployment.serverprovider.providers.lxc [https://github.com/openstack/rally/blob/master/rally/deployment/serverprovider/providers/lxc.py]

OpenStackProvider [Provider Factory]

Provide VMs using an existing OpenStack cloud.

Sample configuration:

{
 "type": "OpenStackProvider",
 "amount": 42,
 "user": "admin",
 "tenant": "admin",
 "password": "secret",
 "auth_url": "http://example.com/",
 "flavor_id": 2,
 "image": {
 "checksum": "75846dd06e9fcfd2b184aba7fa2b2a8d",
 "url": "http://example.com/disk1.img",
 "name": "Ubuntu Precise(added by rally)",
 "format": "qcow2",
 "userdata": "disable_root: false"
 },
 "secgroup_name": "Rally"
}

Namespace: default

Module:
rally.deployment.serverprovider.providers.openstack [https://github.com/openstack/rally/blob/master/rally/deployment/serverprovider/providers/openstack.py]

VirshProvider [Provider Factory]

Create VMs from prebuilt templates.

Sample configuration:

{
 "type": "VirshProvider",
 "connection": "alex@performance-01",
 "template_name": "stack-01-devstack-template",
 "template_user": "ubuntu",
 "template_password": "password"
}

where :

	connection - ssh connection to vms host

	template_name - vm image template

	template_user - vm user to launch devstack

	template_password - vm password to launch devstack

Namespace: default

Module:
rally.deployment.serverprovider.providers.virsh [https://github.com/openstack/rally/blob/master/rally/deployment/serverprovider/providers/virsh.py]

Task Component

Charts

Lines [Chart]

Display results as generic chart with lines.

This plugin processes additive data and displays it in HTML report
as linear chart with X axis bound to iteration number.
Complete output data is displayed as linear chart as well, without
any processing.

Examples of using this plugin in Scenario, for saving output data:

self.add_output(
 additive={"title": "Additive data as stacked area",
 "description": "Iterations trend for foo and bar",
 "chart_plugin": "Lines",
 "data": [["foo", 12], ["bar", 34]]},
 complete={"title": "Complete data as stacked area",
 "description": "Data is shown as stacked area, as-is",
 "chart_plugin": "Lines",
 "data": [["foo", [[0, 5], [1, 42], [2, 15], [3, 7]]],
 ["bar", [[0, 2], [1, 1.3], [2, 5], [3, 9]]]],
 "label": "Y-axis label text",
 "axis_label": "X-axis label text"})

Namespace: default

Module:
rally.task.processing.charts [https://github.com/openstack/rally/blob/master/rally/task/processing/charts.py]

Pie [Chart]

Display results as pie, calculate average values for additive data.

This plugin processes additive data and calculate average values.
Both additive and complete data are displayed in HTML report as pie chart.

Examples of using this plugin in Scenario, for saving output data:

self.add_output(
 additive={"title": "Additive output",
 "description": ("Pie with average data "
 "from all iterations values"),
 "chart_plugin": "Pie",
 "data": [["foo", 12], ["bar", 34], ["spam", 56]]},
 complete={"title": "Complete output",
 "description": "Displayed as a pie, as-is",
 "chart_plugin": "Pie",
 "data": [["foo", 12], ["bar", 34], ["spam", 56]]})

Namespace: default

Module:
rally.task.processing.charts [https://github.com/openstack/rally/blob/master/rally/task/processing/charts.py]

StackedArea [Chart]

Display results as stacked area.

This plugin processes additive data and displays it in HTML report
as stacked area with X axis bound to iteration number.
Complete output data is displayed as stacked area as well, without
any processing.

Keys "description", "label" and "axis_label" are optional.

Examples of using this plugin in Scenario, for saving output data:

self.add_output(
 additive={"title": "Additive data as stacked area",
 "description": "Iterations trend for foo and bar",
 "chart_plugin": "StackedArea",
 "data": [["foo", 12], ["bar", 34]]},
 complete={"title": "Complete data as stacked area",
 "description": "Data is shown as stacked area, as-is",
 "chart_plugin": "StackedArea",
 "data": [["foo", [[0, 5], [1, 42], [2, 15], [3, 7]]],
 ["bar", [[0, 2], [1, 1.3], [2, 5], [3, 9]]]],
 "label": "Y-axis label text",
 "axis_label": "X-axis label text"})

Namespace: default

Module:
rally.task.processing.charts [https://github.com/openstack/rally/blob/master/rally/task/processing/charts.py]

StatsTable [Chart]

Calculate statistics for additive data and display it as table.

This plugin processes additive data and compose statistics that is
displayed as table in HTML report.

Examples of using this plugin in Scenario, for saving output data:

self.add_output(
 additive={"title": "Statistics",
 "description": ("Table with statistics generated "
 "from all iterations values"),
 "chart_plugin": "StatsTable",
 "data": [["foo stat", 12], ["bar", 34], ["spam", 56]]})

Namespace: default

Module:
rally.task.processing.charts [https://github.com/openstack/rally/blob/master/rally/task/processing/charts.py]

Table [Chart]

Display complete output as table, can not be used for additive data.

Use this plugin for complete output data to display it in HTML report
as table. This plugin can not be used for additive data because it
does not contain any processing logic.

Examples of using this plugin in Scenario, for saving output data:

self.add_output(
 complete={"title": "Arbitrary Table",
 "description": "Just show columns and rows as-is",
 "chart_plugin": "Table",
 "data": {"cols": ["foo", "bar", "spam"],
 "rows": [["a row", 1, 2], ["b row", 3, 4],
 ["c row", 5, 6]]}})

Namespace: default

Module:
rally.task.processing.charts [https://github.com/openstack/rally/blob/master/rally/task/processing/charts.py]

TextArea [Chart]

Arbitrary text.

Namespace: default

Module:
rally.task.processing.charts [https://github.com/openstack/rally/blob/master/rally/task/processing/charts.py]

Contexts

admin_cleanup [Context]

Context class for admin resources cleanup.

Namespace: default

Module:
rally.plugins.openstack.context.cleanup.admin [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/cleanup/admin.py]

allow_ssh [Context]

Sets up security groups for all users to access VM via SSH.

Namespace: default

Module:
rally.plugins.openstack.context.network.allow_ssh [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/network/allow_ssh.py]

api_versions [Context]

Context for specifying OpenStack clients versions and service types.

Some OpenStack services support several API versions. To recognize
the endpoints of each version, separate service types are provided in
Keystone service catalog.

Rally has the map of default service names - service types. But since
service type is an entity, which can be configured manually by admin(
via keystone api) without relation to service name, such map can be
insufficient.

Also, Keystone service catalog does not provide a map types to name
(this statement is true for keystone < 3.3).

This context was designed for not-default service types and not-default
API versions usage.

An example of specifying API version:

In this example we will launch NovaKeypair.create_and_list_keypairs
scenario on 2.2 api version.
{
 "NovaKeypair.create_and_list_keypairs": [
 {
 "args": {
 "key_type": "x509"
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 },
 "api_versions": {
 "nova": {
 "version": 2.2
 }
 }
 }
 }
]
}

An example of specifying API version along with service type:

In this example we will launch CinderVolumes.create_and_attach_volume
scenario on Cinder V2
{
 "CinderVolumes.create_and_attach_volume": [
 {
 "args": {
 "size": 10,
 "image": {
 "name": "^cirros.*uec$"
 },
 "flavor": {
 "name": "m1.tiny"
 },
 "create_volume_params": {
 "availability_zone": "nova"
 }
 },
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 1
 },
 "context": {
 "users": {
 "tenants": 2,
 "users_per_tenant": 2
 },
 "api_versions": {
 "cinder": {
 "version": 2,
 "service_type": "volumev2"
 }
 }
 }
 }
]
}

Also, it possible to use service name as an identifier of service endpoint,
but an admin user is required (Keystone can return map of service
names - types, but such API is permitted only for admin). An example:

Similar to the previous example, but `service_name` argument is used
instead of `service_type`
{
 "CinderVolumes.create_and_attach_volume": [
 {
 "args": {
 "size": 10,
 "image": {
 "name": "^cirros.*uec$"
 },
 "flavor": {
 "name": "m1.tiny"
 },
 "create_volume_params": {
 "availability_zone": "nova"
 }
 },
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 1
 },
 "context": {
 "users": {
 "tenants": 2,
 "users_per_tenant": 2
 },
 "api_versions": {
 "cinder": {
 "version": 2,
 "service_name": "cinderv2"
 }
 }
 }
 }
]
}

Namespace: default

Module:
rally.plugins.openstack.context.api_versions [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/api_versions.py]

audit_templates [Context]

Context class for adding temporary audit template for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.watcher.audit_templates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/watcher/audit_templates.py]

ceilometer [Context]

Context for creating samples and collecting resources for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.ceilometer.samples [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/ceilometer/samples.py]

cleanup [Context]

Context class for user resources cleanup.

Namespace: default

Module:
rally.plugins.openstack.context.cleanup.user [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/cleanup/user.py]

cluster_templates [Context]

Context class for generating temporary cluster model for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.magnum.cluster_templates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/magnum/cluster_templates.py]

clusters [Context]

Context class for generating temporary cluster for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.magnum.clusters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/magnum/clusters.py]

custom_image [Context]

Base class for the contexts providing customized image with.

Every context class for the specific customization must implement
the method _customize_image that is able to connect to the server
using SSH and e.g. install applications inside it.

This is used e.g. to install the benchmark application using SSH
access.

This base context class provides a way to prepare an image with
custom preinstalled applications. Basically, this code boots a VM, calls
the _customize_image and then snapshots the VM disk, removing the VM
afterwards. The image UUID is stored in the user["custom_image"]["id"]
and can be used afterwards by scenario.

Namespace: default

Module:
rally.plugins.openstack.context.vm.custom_image [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/vm/custom_image.py]

dummy_context [Context]

Dummy context.

Namespace: default

Module:
rally.plugins.common.context.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/context/dummy.py]

ec2_servers [Context]

Context class for adding temporary servers for benchmarks.

Servers are added for each tenant.

Namespace: default

Module:
rally.plugins.openstack.context.ec2.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/ec2/servers.py]

existing_network [Context]

This context supports using existing networks in Rally.

This context should be used on a deployment with existing users.

Namespace: default

Module:
rally.plugins.openstack.context.network.existing_network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/network/existing_network.py]

existing_users [Context]

This context supports using existing users in Rally.

It uses information about deployment to properly
initialize context["users"] and context["tenants"]

So there won't be big difference between usage of "users" and
"existing_users" context.

Namespace: default

Module:
rally.plugins.openstack.context.keystone.existing_users [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/keystone/existing_users.py]

flavors [Context]

Context creates a list of flavors.

Namespace: default

Module:
rally.plugins.openstack.context.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/nova/flavors.py]

fuel_environments [Context]

Context for generating Fuel environments.

Namespace: default

Module:
rally.plugins.openstack.context.fuel [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/fuel.py]

heat_dataplane [Context]

Context class for create stack by given template.

This context will create stacks by given template for each tenant and
add details to context. Following details will be added:

id of stack;
template file contents;
files dictionary;
stack parameters;

Heat template should define a "gate" node which will interact with Rally
by ssh and workload nodes by any protocol. To make this possible heat
template should accept the following parameters:

network_id: id of public network
router_id: id of external router to connect "gate" node
key_name: name of nova ssh keypair to use for "gate" node

Namespace: default

Module:
rally.plugins.openstack.context.dataplane.heat [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/dataplane/heat.py]

image_command_customizer [Context]

Context class for generating image customized by a command execution.

Run a command specified by configuration to prepare image.

Use this script e.g. to download and install something.

Namespace: default

Module:
rally.plugins.openstack.context.vm.image_command_customizer [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/vm/image_command_customizer.py]

images [Context]

Context class for adding images to each user for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.glance.images [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/glance/images.py]

keypair [Context]

Namespace: default

Module:
rally.plugins.openstack.context.nova.keypairs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/nova/keypairs.py]

lbaas [Context]

Namespace: default

Module:
rally.plugins.openstack.context.neutron.lbaas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/neutron/lbaas.py]

manila_security_services [Context]

This context creates 'security services' for Manila project.

Namespace: default

Module:
rally.plugins.openstack.context.manila.manila_security_services [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/manila/manila_security_services.py]

manila_share_networks [Context]

This context creates share networks for Manila project.

Namespace: default

Module:
rally.plugins.openstack.context.manila.manila_share_networks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/manila/manila_share_networks.py]

manila_shares [Context]

This context creates shares for Manila project.

Namespace: default

Module:
rally.plugins.openstack.context.manila.manila_shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/manila/manila_shares.py]

monasca_metrics [Context]

Context for creating metrics for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.monasca.metrics [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/monasca/metrics.py]

murano_environments [Context]

Context class for creating murano environments.

Namespace: default

Module:
rally.plugins.openstack.context.murano.murano_environments [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/murano/murano_environments.py]

murano_packages [Context]

Context class for uploading applications for murano.

Namespace: default

Module:
rally.plugins.openstack.context.murano.murano_packages [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/murano/murano_packages.py]

network [Context]

Create networking resources.

This creates networks for all tenants, and optionally creates
another resources like subnets and routers.

Namespace: default

Module:
rally.plugins.openstack.context.network.networks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/network/networks.py]

profiles [Context]

Context creates a temporary profile for Senlin test.

Namespace: default

Module:
rally.plugins.openstack.context.senlin.profiles [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/senlin/profiles.py]

quotas [Context]

Context class for updating benchmarks' tenants quotas.

Namespace: default

Module:
rally.plugins.openstack.context.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/quotas/quotas.py]

roles [Context]

Context class for adding temporary roles for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.keystone.roles [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/keystone/roles.py]

sahara_cluster [Context]

Context class for setting up the Cluster an EDP job.

Namespace: default

Module:
rally.plugins.openstack.context.sahara.sahara_cluster [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/sahara/sahara_cluster.py]

sahara_image [Context]

Context class for adding and tagging Sahara images.

Namespace: default

Module:
rally.plugins.openstack.context.sahara.sahara_image [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/sahara/sahara_image.py]

sahara_input_data_sources [Context]

Context class for setting up Input Data Sources for an EDP job.

Namespace: default

Module:
rally.plugins.openstack.context.sahara.sahara_input_data_sources [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/sahara/sahara_input_data_sources.py]

sahara_job_binaries [Context]

Context class for setting up Job Binaries for an EDP job.

Namespace: default

Module:
rally.plugins.openstack.context.sahara.sahara_job_binaries [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/sahara/sahara_job_binaries.py]

sahara_output_data_sources [Context]

Context class for setting up Output Data Sources for an EDP job.

Namespace: default

Module:
rally.plugins.openstack.context.sahara.sahara_output_data_sources [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/sahara/sahara_output_data_sources.py]

servers [Context]

Context class for adding temporary servers for benchmarks.

Servers are added for each tenant.

Namespace: default

Module:
rally.plugins.openstack.context.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/nova/servers.py]

stacks [Context]

Context class for create temporary stacks with resources.

Stack generator allows to generate arbitrary number of stacks for
each tenant before test scenarios. In addition, it allows to define
number of resources (namely OS::Heat::RandomString) that will be created
inside each stack. After test execution the stacks will be
automatically removed from heat.

Namespace: default

Module:
rally.plugins.openstack.context.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/heat/stacks.py]

swift_objects [Context]

Namespace: default

Module:
rally.plugins.openstack.context.swift.objects [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/swift/objects.py]

users [Context]

Context class for generating temporary users/tenants for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.keystone.users [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/keystone/users.py]

volume_types [Context]

Context class for adding volumes types for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.cinder.volume_types [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/cinder/volume_types.py]

volumes [Context]

Context class for adding volumes to each user for benchmarks.

Namespace: default

Module:
rally.plugins.openstack.context.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/cinder/volumes.py]

zones [Context]

Context to add zones_per_tenant zones for each tenant.

Namespace: default

Module:
rally.plugins.openstack.context.designate.zones [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/context/designate/zones.py]

Exporters

file [Exporter]

Namespace: default

Module:
rally.plugins.common.exporter.file_system [https://github.com/openstack/rally/blob/master/rally/plugins/common/exporter/file_system.py]

file-exporter [Exporter]

DEPRECATED.

Namespace: default

Module:
rally.plugins.common.exporter.file_system [https://github.com/openstack/rally/blob/master/rally/plugins/common/exporter/file_system.py]

Hooks

fault_injection [Hook]

Performs fault injection using os-faults library.

	Configuration:

	action - string that represents an action (more info in [1])
verify - whether to verify connection to cloud nodes or not

This plugin discovers extra config of ExistingCloud
and looks for "cloud_config" field. If cloud_config is present then
it will be used to connect to the cloud by os-faults.

Another option is to provide os-faults config file through
OS_FAULTS_CONFIG env variable. Format of the config can
be found in [1].

[1] http://os-faults.readthedocs.io/en/latest/usage.html

Namespace: default

Module:
rally.plugins.openstack.hook.fault_injection [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/hook/fault_injection.py]

sys_call [Hook]

Performs system call.

Namespace: default

Module:
rally.plugins.common.hook.sys_call [https://github.com/openstack/rally/blob/master/rally/plugins/common/hook/sys_call.py]

SLAs

failure_rate [SLA]

Failure rate minimum and maximum in percents.

Namespace: default

Module:
rally.plugins.common.sla.failure_rate [https://github.com/openstack/rally/blob/master/rally/plugins/common/sla/failure_rate.py]

max_avg_duration [SLA]

Maximum average duration of one iteration in seconds.

Namespace: default

Module:
rally.plugins.common.sla.max_average_duration [https://github.com/openstack/rally/blob/master/rally/plugins/common/sla/max_average_duration.py]

max_avg_duration_per_atomic [SLA]

Maximum average duration of one iterations atomic actions in seconds.

Namespace: default

Module:
rally.plugins.common.sla.max_average_duration_per_atomic [https://github.com/openstack/rally/blob/master/rally/plugins/common/sla/max_average_duration_per_atomic.py]

max_seconds_per_iteration [SLA]

Maximum time for one iteration in seconds.

Namespace: default

Module:
rally.plugins.common.sla.iteration_time [https://github.com/openstack/rally/blob/master/rally/plugins/common/sla/iteration_time.py]

outliers [SLA]

Limit the number of outliers (iterations that take too much time).

The outliers are detected automatically using the computation of the mean
and standard deviation (std) of the data.

Namespace: default

Module:
rally.plugins.common.sla.outliers [https://github.com/openstack/rally/blob/master/rally/plugins/common/sla/outliers.py]

performance_degradation [SLA]

Calculates performance degradation based on iteration time

This SLA plugin finds minimum and maximum duration of
iterations completed without errors during Rally task execution.
Assuming that minimum duration is 100%, it calculates
performance degradation against maximum duration.

Namespace: default

Module:
rally.plugins.common.sla.performance_degradation [https://github.com/openstack/rally/blob/master/rally/plugins/common/sla/performance_degradation.py]

Scenarios

Authenticate.keystone [Scenario]

Check Keystone Client.

Namespace: default

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_ceilometer [Scenario]

Check Ceilometer Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_cinder [Scenario]

Check Cinder Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_glance [Scenario]

Check Glance Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.
In following we are checking for non-existent image.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_heat [Scenario]

Check Heat Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_monasca [Scenario]

Check Monasca Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_neutron [Scenario]

Check Neutron Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

Authenticate.validate_nova [Scenario]

Check Nova Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

Namespace: default

Parameters:

	repetitions: number of times to validate

Module:
rally.plugins.openstack.scenarios.authenticate.authenticate [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/authenticate/authenticate.py]

CeilometerAlarms.create_alarm [Scenario]

Create an alarm.

This scenarios test POST /v2/alarms.
meter_name and threshold are required parameters for alarm creation.
kwargs stores other optional parameters like 'ok_actions',
'project_id' etc that may be passed while creating an alarm.

Namespace: default

Parameters:

	meter_name: specifies meter name of the alarm

	threshold: specifies alarm threshold

	kwargs: specifies optional arguments for alarm creation.

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerAlarms.create_alarm_and_get_history [Scenario]

Create an alarm, get and set the state and get the alarm history.

	This scenario makes following queries:

	GET /v2/alarms/{alarm_id}/history
GET /v2/alarms/{alarm_id}/state
PUT /v2/alarms/{alarm_id}/state

Initially alarm is created and then get the state of the created alarm
using its alarm_id. Then get the history of the alarm. And finally the
state of the alarm is updated using given state. meter_name and
threshold are required parameters for alarm creation. kwargs stores
other optional parameters like 'ok_actions', 'project_id' etc that may
be passed while alarm creation.

Namespace: default

Parameters:

	meter_name: specifies meter name of the alarm

	threshold: specifies alarm threshold

	state: an alarm state to be set

	
	timeout: The number of seconds for which to attempt a

	successful check of the alarm state

	kwargs: specifies optional arguments for alarm creation.

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerAlarms.create_and_delete_alarm [Scenario]

Create and delete the newly created alarm.

This scenarios test DELETE /v2/alarms/(alarm_id)
Initially alarm is created and then the created alarm is deleted using
its alarm_id. meter_name and threshold are required parameters
for alarm creation. kwargs stores other optional parameters like
'ok_actions', 'project_id' etc that may be passed while alarm creation.

Namespace: default

Parameters:

	meter_name: specifies meter name of the alarm

	threshold: specifies alarm threshold

	kwargs: specifies optional arguments for alarm creation.

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerAlarms.create_and_get_alarm [Scenario]

Create and get the newly created alarm.

These scenarios test GET /v2/alarms/(alarm_id)
Initially an alarm is created and then its detailed information is
fetched using its alarm_id. meter_name and threshold are required
parameters for alarm creation. kwargs stores other optional parameters
like 'ok_actions', 'project_id' etc. that may be passed while creating
an alarm.

Namespace: default

Parameters:

	meter_name: specifies meter name of the alarm

	threshold: specifies alarm threshold

	kwargs: specifies optional arguments for alarm creation.

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerAlarms.create_and_list_alarm [Scenario]

Create and get the newly created alarm.

This scenarios test GET /v2/alarms/(alarm_id)
Initially alarm is created and then the created alarm is fetched using
its alarm_id. meter_name and threshold are required parameters
for alarm creation. kwargs stores other optional parameters like
'ok_actions', 'project_id' etc. that may be passed while creating
an alarm.

Namespace: default

Parameters:

	meter_name: specifies meter name of the alarm

	threshold: specifies alarm threshold

	kwargs: specifies optional arguments for alarm creation.

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerAlarms.create_and_update_alarm [Scenario]

Create and update the newly created alarm.

This scenarios test PUT /v2/alarms/(alarm_id)
Initially alarm is created and then the created alarm is updated using
its alarm_id. meter_name and threshold are required parameters
for alarm creation. kwargs stores other optional parameters like
'ok_actions', 'project_id' etc that may be passed while alarm creation.

Namespace: default

Parameters:

	meter_name: specifies meter name of the alarm

	threshold: specifies alarm threshold

	kwargs: specifies optional arguments for alarm creation.

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerAlarms.list_alarms [Scenario]

Fetch all alarms.

This scenario fetches list of all alarms using GET /v2/alarms.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.alarms [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/alarms.py]

CeilometerEvents.create_user_and_get_event [Scenario]

Create user and gets event.

This scenario creates user to store new event and
fetches one event using GET /v2/events/<message_id>.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.events [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/events.py]

CeilometerEvents.create_user_and_list_event_types [Scenario]

Create user and fetch all event types.

This scenario creates user to store new event and
fetches list of all events types using GET /v2/event_types.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.events [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/events.py]

CeilometerEvents.create_user_and_list_events [Scenario]

Create user and fetch all events.

This scenario creates user to store new event and
fetches list of all events using GET /v2/events.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.events [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/events.py]

CeilometerMeters.list_matched_meters [Scenario]

Get meters that matched fields from context and args.

Namespace: default

Parameters:

	filter_by_user_id: flag for query by user_id

	filter_by_project_id: flag for query by project_id

	filter_by_resource_id: flag for query by resource_id

	metadata_query: dict with metadata fields and values for query

	limit: count of resources in response

Module:
rally.plugins.openstack.scenarios.ceilometer.meters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/meters.py]

CeilometerMeters.list_meters [Scenario]

Check all available queries for list resource request.

Namespace: default

Parameters:

	metadata_query: dict with metadata fields and values

	limit: limit of meters in response

Module:
rally.plugins.openstack.scenarios.ceilometer.meters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/meters.py]

CeilometerQueries.create_and_query_alarm_history [Scenario]

Create an alarm and then query for its history.

This scenario tests POST /v2/query/alarms/history
An alarm is first created and then its alarm_id is used to fetch the
history of that specific alarm.

Namespace: default

Parameters:

	meter_name: specifies meter name of alarm

	threshold: specifies alarm threshold

	orderby: optional param for specifying ordering of results

	limit: optional param for maximum number of results returned

	kwargs: optional parameters for alarm creation

Module:
rally.plugins.openstack.scenarios.ceilometer.queries [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/queries.py]

CeilometerQueries.create_and_query_alarms [Scenario]

Create an alarm and then query it with specific parameters.

This scenario tests POST /v2/query/alarms
An alarm is first created and then fetched using the input query.

Namespace: default

Parameters:

	meter_name: specifies meter name of alarm

	threshold: specifies alarm threshold

	filter: optional filter query dictionary

	orderby: optional param for specifying ordering of results

	limit: optional param for maximum number of results returned

	kwargs: optional parameters for alarm creation

Module:
rally.plugins.openstack.scenarios.ceilometer.queries [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/queries.py]

CeilometerQueries.create_and_query_samples [Scenario]

Create a sample and then query it with specific parameters.

This scenario tests POST /v2/query/samples
A sample is first created and then fetched using the input query.

Namespace: default

Parameters:

	counter_name: specifies name of the counter

	counter_type: specifies type of the counter

	counter_unit: specifies unit of the counter

	counter_volume: specifies volume of the counter

	resource_id: specifies resource id for the sample created

	filter: optional filter query dictionary

	orderby: optional param for specifying ordering of results

	limit: optional param for maximum number of results returned

	kwargs: parameters for sample creation

Module:
rally.plugins.openstack.scenarios.ceilometer.queries [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/queries.py]

CeilometerResource.get_tenant_resources [Scenario]

Get all tenant resources.

This scenario retrieves information about tenant resources using
GET /v2/resources/(resource_id)

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.resources [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/resources.py]

CeilometerResource.list_matched_resources [Scenario]

Get resources that matched fields from context and args.

Namespace: default

Parameters:

	filter_by_user_id: flag for query by user_id

	filter_by_project_id: flag for query by project_id

	filter_by_resource_id: flag for query by resource_id

	metadata_query: dict with metadata fields and values for query

	start_time: lower bound of resource timestamp in isoformat

	end_time: upper bound of resource timestamp in isoformat

	limit: count of resources in response

Module:
rally.plugins.openstack.scenarios.ceilometer.resources [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/resources.py]

CeilometerResource.list_resources [Scenario]

Check all available queries for list resource request.

This scenario fetches list of all resources using GET /v2/resources.

Namespace: default

Parameters:

	metadata_query: dict with metadata fields and values for query

	start_time: lower bound of resource timestamp in isoformat

	end_time: upper bound of resource timestamp in isoformat

	limit: count of resources in response

Module:
rally.plugins.openstack.scenarios.ceilometer.resources [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/resources.py]

CeilometerSamples.list_matched_samples [Scenario]

Get list of samples that matched fields from context and args.

Namespace: default

Parameters:

	filter_by_user_id: flag for query by user_id

	filter_by_project_id: flag for query by project_id

	filter_by_resource_id: flag for query by resource_id

	metadata_query: dict with metadata fields and values for query

	limit: count of samples in response

Module:
rally.plugins.openstack.scenarios.ceilometer.samples [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/samples.py]

CeilometerSamples.list_samples [Scenario]

Fetch all available queries for list sample request.

Namespace: default

Parameters:

	metadata_query: dict with metadata fields and values for query

	limit: count of samples in response

Module:
rally.plugins.openstack.scenarios.ceilometer.samples [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/samples.py]

CeilometerStats.create_meter_and_get_stats [Scenario]

Create a meter and fetch its statistics.

Meter is first created and then statistics is fetched for the same
using GET /v2/meters/(meter_name)/statistics.

Namespace: default

Parameters:

	kwargs: contains optional arguments to create a meter

Module:
rally.plugins.openstack.scenarios.ceilometer.stats [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/stats.py]

CeilometerStats.get_stats [Scenario]

Fetch statistics for certain meter.

Statistics is fetched for the using
GET /v2/meters/(meter_name)/statistics.

Namespace: default

Parameters:

	meter_name: meter to take statistic for

	filter_by_user_id: flag for query by user_id

	filter_by_project_id: flag for query by project_id

	filter_by_resource_id: flag for query by resource_id

	metadata_query: dict with metadata fields and values for query

	period: the length of the time range covered by these stats

	groupby: the fields used to group the samples

	aggregates: name of function for samples aggregation

Returns:
list of statistics data

Module:
rally.plugins.openstack.scenarios.ceilometer.stats [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/stats.py]

CeilometerTraits.create_user_and_list_trait_descriptions [Scenario]

Create user and fetch all trait descriptions.

This scenario creates user to store new event and
fetches list of all traits for certain event type using
GET /v2/event_types/<event_type>/traits.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.traits [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/traits.py]

CeilometerTraits.create_user_and_list_traits [Scenario]

Create user and fetch all event traits.

This scenario creates user to store new event and
fetches list of all traits for certain event type and
trait name using GET /v2/event_types/<event_type>/traits/<trait_name>.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ceilometer.traits [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ceilometer/traits.py]

CinderVolumeBackups.create_incremental_volume_backup [Scenario]

Create a incremental volume backup.

The scenario first create a volume, the create a backup, the backup
is full backup. Because Incremental backup must be based on the
full backup. finally create a incremental backup.

Namespace: default

Parameters:

	size: volume size in GB

	do_delete: deletes backup and volume after creating if True

	create_volume_kwargs: optional args to create a volume

	create_backup_kwargs: optional args to create a volume backup

Module:
rally.plugins.openstack.scenarios.cinder.volume_backups [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volume_backups.py]

CinderVolumeTypes.create_and_delete_volume_type [Scenario]

Create and delete a volume Type.

Namespace: default

Parameters:

	
	kwargs: Optional parameters used during volume

	type creation.

Module:
rally.plugins.openstack.scenarios.cinder.volume_types [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volume_types.py]

CinderVolumeTypes.create_and_list_encryption_type [Scenario]

Create and list encryption type

	This scenario firstly creates a volume type, secondly creates an

	encryption type for the volume type, thirdly lists all encryption
types.

Namespace: default

Parameters:

	specs: the encryption type specifications to add

	search_opts: Options used when search for encryption types

	
	kwargs: Optional parameters used during volume

	type creation.

Module:
rally.plugins.openstack.scenarios.cinder.volume_types [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volume_types.py]

CinderVolumeTypes.create_volume_type_and_encryption_type [Scenario]

Create encryption type

	This scenario first creates a volume type, then creates an encryption

	type for the volume type.

Namespace: default

Parameters:

	specs: the encryption type specifications to add

	
	kwargs: Optional parameters used during volume

	type creation.

Module:
rally.plugins.openstack.scenarios.cinder.volume_types [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volume_types.py]

CinderVolumes.create_and_accept_transfer [Scenario]

Create a volume transfer, then accept it

Measure the "cinder transfer-create" and "cinder transfer-accept"
command performace.

Namespace: default

Parameters:

	size: volume size (integer, in GB)

	image: image to be used to create initial volume

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_attach_volume [Scenario]

Create a VM and attach a volume to it.

Simple test to create a VM and attach a volume, then
detach the volume and delete volume/VM.

Namespace: default

Parameters:

	
	size: volume size (integer, in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	image: Glance image name to use for the VM

	flavor: VM flavor name

	create_volume_params: optional arguments for volume creation

	create_vm_params: optional arguments for VM creation

	kwargs: (deprecated) optional arguments for VM creation

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_delete_snapshot [Scenario]

Create and then delete a volume-snapshot.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between snapshot creation and deletion
(of random duration from [min_sleep, max_sleep]).

Namespace: default

Parameters:

	
	force: when set to True, allows snapshot of a volume when

	the volume is attached to an instance

	
	min_sleep: minimum sleep time between snapshot creation and

	deletion (in seconds)

	
	max_sleep: maximum sleep time between snapshot creation and

	deletion (in seconds)

	kwargs: optional args to create a snapshot

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_delete_volume [Scenario]

Create and then delete a volume.

Good for testing a maximal bandwidth of cloud. Optional 'min_sleep'
and 'max_sleep' parameters allow the scenario to simulate a pause
between volume creation and deletion (of random duration from
[min_sleep, max_sleep]).

Namespace: default

Parameters:

	
	size: volume size (integer, in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	image: image to be used to create volume

	
	min_sleep: minimum sleep time between volume creation and

	deletion (in seconds)

	
	max_sleep: maximum sleep time between volume creation and

	deletion (in seconds)

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_extend_volume [Scenario]

Create and extend a volume and then delete it.

Namespace: default

Parameters:

	
	size: volume size (in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	
	new_size: volume new size (in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

to extend.
Notice: should be bigger volume size

	
	min_sleep: minimum sleep time between volume extension and

	deletion (in seconds)

	
	max_sleep: maximum sleep time between volume extension and

	deletion (in seconds)

	kwargs: optional args to extend the volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_get_volume [Scenario]

Create a volume and get the volume.

Measure the "cinder show" command performance.

Namespace: default

Parameters:

	
	size: volume size (integer, in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	image: image to be used to create volume

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_list_snapshots [Scenario]

Create and then list a volume-snapshot.

Namespace: default

Parameters:

	
	force: when set to True, allows snapshot of a volume when

	the volume is attached to an instance

	
	detailed: True if detailed information about snapshots

	should be listed

	kwargs: optional args to create a snapshot

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_list_volume [Scenario]

Create a volume and list all volumes.

Measure the "cinder volume-list" command performance.

If you have only 1 user in your context, you will
add 1 volume on every iteration. So you will have more
and more volumes and will be able to measure the
performance of the "cinder volume-list" command depending on
the number of images owned by users.

Namespace: default

Parameters:

	
	size: volume size (integer, in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	
	detailed: determines whether the volume listing should contain

	detailed information about all of them

	image: image to be used to create volume

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_list_volume_backups [Scenario]

Create and then list a volume backup.

Namespace: default

Parameters:

	size: volume size in GB

	
	detailed: True if detailed information about backup

	should be listed

	do_delete: if True, a volume backup will be deleted

	create_volume_kwargs: optional args to create a volume

	create_backup_kwargs: optional args to create a volume backup

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_restore_volume_backup [Scenario]

Restore volume backup.

Namespace: default

Parameters:

	size: volume size in GB

	
	do_delete: if True, the volume and the volume backup will

	be deleted after creation.

	create_volume_kwargs: optional args to create a volume

	create_backup_kwargs: optional args to create a volume backup

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_update_volume [Scenario]

Create a volume and update its name and description.

Namespace: default

Parameters:

	size: volume size (integer, in GB)

	image: image to be used to create volume

	create_volume_kwargs: dict, to be used to create volume

	update_volume_kwargs: dict, to be used to update volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_and_upload_volume_to_image [Scenario]

Create and upload a volume to image.

Namespace: default

Parameters:

	
	size: volume size (integers, in GB), or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	image: image to be used to create volume.

	
	force: when set to True volume that is attached to an instance

	could be uploaded to image

	container_format: image container format

	disk_format: disk format for image

	do_delete: deletes image and volume after uploading if True

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_from_volume_and_delete_volume [Scenario]

Create volume from volume and then delete it.

Scenario for testing volume clone.Optional 'min_sleep' and 'max_sleep'
parameters allow the scenario to simulate a pause between volume
creation and deletion (of random duration from [min_sleep, max_sleep]).

Namespace: default

Parameters:

	
	size: volume size (in GB), or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

Should be equal or bigger source volume size

	
	min_sleep: minimum sleep time between volume creation and

	deletion (in seconds)

	
	max_sleep: maximum sleep time between volume creation and

	deletion (in seconds)

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_nested_snapshots_and_attach_volume [Scenario]

Create a volume from snapshot and attach/detach the volume

This scenario create volume, create it's snapshot, attach volume,
then create new volume from existing snapshot and so on,
with defined nested level, after all detach and delete them.
volume->snapshot->volume->snapshot->volume ...

Namespace: default

Parameters:

	
	size: Volume size - dictionary, contains two values:

	
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

default values: {"min": 1, "max": 5}

	nested_level: amount of nested levels

	create_volume_kwargs: optional args to create a volume

	create_snapshot_kwargs: optional args to create a snapshot

	
	kwargs: Optional parameters used during volume

	snapshot creation.

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_snapshot_and_attach_volume [Scenario]

Create volume, snapshot and attach/detach volume.

Namespace: default

Parameters:

	volume_type: Name of volume type to use

	
	size: Volume size - dictionary, contains two values:

	
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

default values: {"min": 1, "max": 5}

	
	kwargs: Optional parameters used during volume

	snapshot creation.

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_volume [Scenario]

Create a volume.

Good test to check how influence amount of active volumes on
performance of creating new.

Namespace: default

Parameters:

	
	size: volume size (integer, in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	image: image to be used to create volume

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_volume_and_clone [Scenario]

Create a volume, then clone it to another volume.

	This creates a volume, then clone it to anothor volume,

	
	and then clone the new volume to next volume...

	
	create source volume (from image)

	clone source volume to volume1

	clone volume1 to volume2

	clone volume2 to volume3

	...

Namespace: default

Parameters:

	
	size: volume size (integer, in GB) or

	
	dictionary, must contain two values:

	min - minimum size volumes will be created as;
max - maximum size volumes will be created as.

	image: image to be used to create initial volume

	nested_level: amount of nested levels

	kwargs: optional args to create volumes

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_volume_and_update_readonly_flag [Scenario]

Create a volume and then update its readonly flag.

Namespace: default

Parameters:

	size: volume size (integer, in GB)

	image: image to be used to create volume

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_volume_backup [Scenario]

Create a volume backup.

Namespace: default

Parameters:

	size: volume size in GB

	
	do_delete: if True, a volume and a volume backup will

	be deleted after creation.

	create_volume_kwargs: optional args to create a volume

	create_backup_kwargs: optional args to create a volume backup

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.create_volume_from_snapshot [Scenario]

Create a volume-snapshot, then create a volume from this snapshot.

Namespace: default

Parameters:

	
	do_delete: if True, a snapshot and a volume will

	be deleted after creation.

	create_snapshot_kwargs: optional args to create a snapshot

	kwargs: optional args to create a volume

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.list_transfers [Scenario]

List all transfers.

This simple scenario tests the "cinder transfer-list" command by
listing all the volume transfers.

Namespace: default

Parameters:

	
	detailed: If True, detailed information about volume transfer

	should be listed

	search_opts: Search options to filter out volume transfers.

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.list_types [Scenario]

List all volume types.

This simple scenario tests the cinder type-list command by listing
all the volume types.

Namespace: default

Parameters:

	search_opts: Options used when search for volume types

	is_public: If query public volume type

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.list_volumes [Scenario]

List all volumes.

This simple scenario tests the cinder list command by listing
all the volumes.

Namespace: default

Parameters:

	
	detailed: True if detailed information about volumes

	should be listed

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

CinderVolumes.modify_volume_metadata [Scenario]

Modify a volume's metadata.

This requires a volume to be created with the volumes
context. Additionally, sets * set_size must be greater
than or equal to deletes * delete_size.

Namespace: default

Parameters:

	sets: how many set_metadata operations to perform

	
	set_size: number of metadata keys to set in each

	set_metadata operation

	deletes: how many delete_metadata operations to perform

	
	delete_size: number of metadata keys to delete in each

	delete_metadata operation

Module:
rally.plugins.openstack.scenarios.cinder.volumes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/cinder/volumes.py]

DesignateBasic.create_and_delete_domain [Scenario]

Create and then delete a domain.

Measure the performance of creating and deleting domains
with different level of load.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_delete_records [Scenario]

Create and then delete records.

Measure the performance of creating and deleting records
with different level of load.

Namespace: default

Parameters:

	records_per_domain: Records to create pr domain.

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_delete_recordsets [Scenario]

Create and then delete recordsets.

Measure the performance of creating and deleting recordsets
with different level of load.

Namespace: default

Parameters:

	recordsets_per_zone: recordsets to create pr zone.

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_delete_server [Scenario]

Create and then delete a server.

Measure the performance of creating and deleting servers
with different level of load.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_delete_zone [Scenario]

Create and then delete a zone.

Measure the performance of creating and deleting zones
with different level of load.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_list_domains [Scenario]

Create a domain and list all domains.

Measure the "designate domain-list" command performance.

If you have only 1 user in your context, you will
add 1 domain on every iteration. So you will have more
and more domain and will be able to measure the
performance of the "designate domain-list" command depending on
the number of domains owned by users.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_list_records [Scenario]

Create and then list records.

If you have only 1 user in your context, you will
add 1 record on every iteration. So you will have more
and more records and will be able to measure the
performance of the "designate record-list" command depending on
the number of domains/records owned by users.

Namespace: default

Parameters:

	records_per_domain: Records to create pr domain.

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_list_recordsets [Scenario]

Create and then list recordsets.

If you have only 1 user in your context, you will
add 1 recordset on every iteration. So you will have more
and more recordsets and will be able to measure the
performance of the "openstack recordset list" command depending on
the number of zones/recordsets owned by users.

Namespace: default

Parameters:

	recordsets_per_zone: recordsets to create pr zone.

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_list_servers [Scenario]

Create a Designate server and list all servers.

If you have only 1 user in your context, you will
add 1 server on every iteration. So you will have more
and more server and will be able to measure the
performance of the "designate server-list" command depending on
the number of servers owned by users.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_list_zones [Scenario]

Create a zone and list all zones.

Measure the "openstack zone list" command performance.

If you have only 1 user in your context, you will
add 1 zone on every iteration. So you will have more
and more zone and will be able to measure the
performance of the "openstack zone list" command depending on
the number of zones owned by users.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.create_and_update_domain [Scenario]

Create and then update a domain.

Measure the performance of creating and updating domains
with different level of load.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.list_domains [Scenario]

List Designate domains.

This simple scenario tests the designate domain-list command by listing
all the domains.

Suppose if we have 2 users in context and each has 2 domains
uploaded for them we will be able to test the performance of
designate domain-list command in this case.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.list_records [Scenario]

List Designate records.

This simple scenario tests the designate record-list command by listing
all the records in a domain.

Suppose if we have 2 users in context and each has 2 domains
uploaded for them we will be able to test the performance of
designate record-list command in this case.

Namespace: default

Parameters:

	domain_id: Domain ID

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.list_recordsets [Scenario]

List Designate recordsets.

This simple scenario tests the openstack recordset list command by
listing all the recordsets in a zone.

Namespace: default

Parameters:

	zone_id: Zone ID

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.list_servers [Scenario]

List Designate servers.

This simple scenario tests the designate server-list command by listing
all the servers.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

DesignateBasic.list_zones [Scenario]

List Designate zones.

This simple scenario tests the openstack zone list command by listing
all the zones.

Namespace: default

Module:
rally.plugins.openstack.scenarios.designate.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/designate/basic.py]

Dummy.dummy [Scenario]

Do nothing and sleep for the given number of seconds (0 by default).

Dummy.dummy can be used for testing performance of different
ScenarioRunners and of the ability of rally to store a large
amount of results.

Namespace: default

Parameters:

	sleep: idle time of method (in seconds).

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.dummy_exception [Scenario]

Throw an exception.

Dummy.dummy_exception can be used for test if exceptions are processed
properly by ScenarioRunners and benchmark and analyze rally
results storing process.

Namespace: default

Parameters:

	size_of_message: int size of the exception message

	sleep: idle time of method (in seconds).

	message: message of the exception

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.dummy_exception_probability [Scenario]

Throw an exception with given probability.

Dummy.dummy_exception_probability can be used to test if exceptions
are processed properly by ScenarioRunners. This scenario will throw
an exception sometimes, depending on the given exception probability.

Namespace: default

Parameters:

	
	exception_probability: Sets how likely it is that an exception

	will be thrown. Float between 0 and 1
0=never 1=always.

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.dummy_output [Scenario]

Generate dummy output.

This scenario generates example of output data.

Namespace: default

Parameters:

	random_range: max int limit for generated random values

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.dummy_random_action [Scenario]

Sleep random time in dummy actions.

Namespace: default

Parameters:

	actions_num: int number of actions to generate

	sleep_min: minimal time to sleep, numeric seconds

	sleep_max: maximum time to sleep, numeric seconds

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.dummy_random_fail_in_atomic [Scenario]

Dummy.dummy_random_fail_in_atomic in dummy actions.

Can be used to test atomic actions
failures processing.

Namespace: default

Parameters:

	
	exception_probability: Probability with which atomic actions

	fail in this dummy scenario (0 <= p <= 1)

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.dummy_timed_atomic_actions [Scenario]

Run some sleepy atomic actions for SLA atomic action tests.

Namespace: default

Parameters:

	number_of_actions: int number of atomic actions to create

	sleep_factor: int multiplier for number of seconds to sleep

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

Dummy.failure [Scenario]

Raise errors in some iterations.

Namespace: default

Parameters:

	sleep: float iteration sleep time in seconds

	
	from_iteration: int iteration number which starts range

	of failed iterations

	
	to_iteration: int iteration number which ends range of

	failed iterations

	
	each: int cyclic number of iteration which actually raises

	an error in selected range. For example, each=3 will
raise error in each 3rd iteration.

Module:
rally.plugins.common.scenarios.dummy.dummy [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/dummy/dummy.py]

EC2Servers.boot_server [Scenario]

Boot a server.

Assumes that cleanup is done elsewhere.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	kwargs: optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.ec2.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ec2/servers.py]

EC2Servers.list_servers [Scenario]

List all servers.

This simple scenario tests the EC2 API list function by listing
all the servers.

Namespace: default

Module:
rally.plugins.openstack.scenarios.ec2.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ec2/servers.py]

FuelEnvironments.create_and_delete_environment [Scenario]

Create and delete Fuel environments.

Namespace: default

Parameters:

	release_id: release id (default 1)

	network_provider: network provider (default 'neutron')

	deployment_mode: deployment mode (default 'ha_compact')

	net_segment_type: net segment type (default 'vlan')

	delete_retries: retries count on delete operations (default 5)

Module:
rally.plugins.openstack.scenarios.fuel.environments [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/fuel/environments.py]

FuelEnvironments.create_and_list_environments [Scenario]

Create and list Fuel environments.

Namespace: default

Parameters:

	release_id: release id (default 1)

	network_provider: network provider (default 'neutron')

	deployment_mode: deployment mode (default 'ha_compact')

	net_segment_type: net segment type (default 'vlan')

Module:
rally.plugins.openstack.scenarios.fuel.environments [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/fuel/environments.py]

FuelNodes.add_and_remove_node [Scenario]

Add node to environment and remove.

Namespace: default

Parameters:

	
	node_roles: list. Roles, which node should be assigned to

	env with

Module:
rally.plugins.openstack.scenarios.fuel.nodes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/fuel/nodes.py]

GlanceImages.create_and_delete_image [Scenario]

Create and then delete an image.

Namespace: default

Parameters:

	
	container_format: container format of image. Acceptable

	formats: ami, ari, aki, bare, and ovf

	image_location: image file location

	
	disk_format: disk format of image. Acceptable formats:

	ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, and iso

	kwargs: optional parameters to create image

Module:
rally.plugins.openstack.scenarios.glance.images [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/glance/images.py]

GlanceImages.create_and_list_image [Scenario]

Create an image and then list all images.

Measure the "glance image-list" command performance.

If you have only 1 user in your context, you will
add 1 image on every iteration. So you will have more
and more images and will be able to measure the
performance of the "glance image-list" command depending on
the number of images owned by users.

Namespace: default

Parameters:

	
	container_format: container format of image. Acceptable

	formats: ami, ari, aki, bare, and ovf

	image_location: image file location

	
	disk_format: disk format of image. Acceptable formats:

	ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, and iso

	kwargs: optional parameters to create image

Module:
rally.plugins.openstack.scenarios.glance.images [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/glance/images.py]

GlanceImages.create_image_and_boot_instances [Scenario]

Create an image and boot several instances from it.

Namespace: default

Parameters:

	
	container_format: container format of image. Acceptable

	formats: ami, ari, aki, bare, and ovf

	image_location: image file location

	
	disk_format: disk format of image. Acceptable formats:

	ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, and iso

	flavor: Nova flavor to be used to launch an instance

	number_instances: number of Nova servers to boot

	create_image_kwargs: optional parameters to create image

	boot_server_kwargs: optional parameters to boot server

	kwargs: optional parameters to create server (deprecated)

Module:
rally.plugins.openstack.scenarios.glance.images [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/glance/images.py]

GlanceImages.list_images [Scenario]

List all images.

This simple scenario tests the glance image-list command by listing
all the images.

Suppose if we have 2 users in context and each has 2 images
uploaded for them we will be able to test the performance of
glance image-list command in this case.

Namespace: default

Module:
rally.plugins.openstack.scenarios.glance.images [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/glance/images.py]

HeatStacks.create_and_delete_stack [Scenario]

Create and then delete a stack.

Measure the "heat stack-create" and "heat stack-delete" commands
performance.

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_and_list_stack [Scenario]

Create a stack and then list all stacks.

Measure the "heat stack-create" and "heat stack-list" commands
performance.

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_check_delete_stack [Scenario]

Create, check and delete a stack.

Measure the performance of the following commands:
- heat stack-create
- heat action-check
- heat stack-delete

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_snapshot_restore_delete_stack [Scenario]

Create, snapshot-restore and then delete a stack.

Measure performance of the following commands:
heat stack-create
heat stack-snapshot
heat stack-restore
heat stack-delete

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_stack_and_list_output [Scenario]

Create stack and list outputs by using new algorithm.

Measure performance of the following commands:
heat stack-create
heat output-list

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_stack_and_list_output_via_API [Scenario]

Create stack and list outputs by using old algorithm.

Measure performance of the following commands:
heat stack-create
heat output-list

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_stack_and_scale [Scenario]

Create an autoscaling stack and invoke a scaling policy.

Measure the performance of autoscaling webhooks.

Namespace: default

Parameters:

	
	template_path: path to template file that includes an

	OS::Heat::AutoScalingGroup resource

	
	output_key: the stack output key that corresponds to

	the scaling webhook

	
	delta: the number of instances the stack is expected to

	change by.

	parameters: parameters to use in heat template

	
	files: files used in template (dict of file name to

	file path)

	environment: stack environment definition (dict)

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_stack_and_show_output [Scenario]

Create stack and show output by using new algorithm.

Measure performance of the following commands:
heat stack-create
heat output-show

Namespace: default

Parameters:

	template_path: path to stack template file

	
	output_key: the stack output key that corresponds to

	the scaling webhook

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_stack_and_show_output_via_API [Scenario]

Create stack and show output by using old algorithm.

Measure performance of the following commands:
heat stack-create
heat output-show

Namespace: default

Parameters:

	template_path: path to stack template file

	
	output_key: the stack output key that corresponds to

	the scaling webhook

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_suspend_resume_delete_stack [Scenario]

Create, suspend-resume and then delete a stack.

Measure performance of the following commands:
heat stack-create
heat action-suspend
heat action-resume
heat stack-delete

Namespace: default

Parameters:

	template_path: path to stack template file

	parameters: parameters to use in heat template

	files: files used in template

	environment: stack environment definition

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.create_update_delete_stack [Scenario]

Create, update and then delete a stack.

Measure the "heat stack-create", "heat stack-update"
and "heat stack-delete" commands performance.

Namespace: default

Parameters:

	template_path: path to stack template file

	updated_template_path: path to updated stack template file

	parameters: parameters to use in heat template

	
	updated_parameters: parameters to use in updated heat template

	If not specified then parameters will be
used instead

	files: files used in template

	
	updated_files: files used in updated template. If not specified

	files value will be used instead

	environment: stack environment definition

	updated_environment: environment definition for updated stack

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.list_stacks_and_events [Scenario]

List events from tenant stacks.

Namespace: default

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HeatStacks.list_stacks_and_resources [Scenario]

List all resources from tenant stacks.

Namespace: default

Module:
rally.plugins.openstack.scenarios.heat.stacks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/heat/stacks.py]

HttpRequests.check_random_request [Scenario]

Benchmark the list of requests

This scenario takes random url from list of requests, and raises
exception if the response is not the expected response.

Namespace: default

Parameters:

	requests: List of request dicts

	status_code: Expected Response Code it will

be used only if we doesn't specified it in request proper

Module:
rally.plugins.common.scenarios.requests.http_requests [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/requests/http_requests.py]

HttpRequests.check_request [Scenario]

Standard way to benchmark web services.

This benchmark is used to make request and check it with expected
Response.

Namespace: default

Parameters:

	url: url for the Request object

	method: method for the Request object

	status_code: expected response code

	kwargs: optional additional request parameters

Module:
rally.plugins.common.scenarios.requests.http_requests [https://github.com/openstack/rally/blob/master/rally/plugins/common/scenarios/requests/http_requests.py]

IronicNodes.create_and_delete_node [Scenario]

Create and delete node.

Namespace: default

Parameters:

	kwargs: Optional additional arguments for node creation

Module:
rally.plugins.openstack.scenarios.ironic.nodes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ironic/nodes.py]

IronicNodes.create_and_list_node [Scenario]

Create and list nodes.

Namespace: default

Parameters:

	
	associated: Optional. Either a Boolean or a string

	representation of a Boolean that indicates whether
to return a list of associated (True or "True") or
unassociated (False or "False") nodes.

	
	maintenance: Optional. Either a Boolean or a string

	representation of a Boolean that indicates whether
to return nodes in maintenance mode (True or
"True"), or not in maintenance mode (False or
"False").

	
	marker: Optional, the UUID of a node, eg the last

	node from a previous result set. Return
the next result set.

	
	limit: The maximum number of results to return per

	
request, if:

	limit > 0, the maximum number of nodes to return.

	limit == 0, return the entire list of nodes.

	limit param is NOT specified (None), the number of items
returned respect the maximum imposed by the Ironic API
(see Ironic's api.max_limit option).

	
	detail: Optional, boolean whether to return detailed

	information about nodes.

	sort_key: Optional, field used for sorting.

	
	sort_dir: Optional, direction of sorting, either 'asc' (the

	default) or 'desc'.

	kwargs: Optional additional arguments for node creation

Module:
rally.plugins.openstack.scenarios.ironic.nodes [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/ironic/nodes.py]

KeystoneBasic.add_and_remove_user_role [Scenario]

Create a user role add to a user and disassociate.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.authenticate_user_and_validate_token [Scenario]

Authenticate and validate a keystone token.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_add_and_list_user_roles [Scenario]

Create user role, add it and list user roles for given user.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_delete_ec2credential [Scenario]

Create and delete keystone ec2-credential.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_delete_role [Scenario]

Create a user role and delete it.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_delete_service [Scenario]

Create and delete service.

Namespace: default

Parameters:

	service_type: type of the service

	description: description of the service

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_get_role [Scenario]

Create a user role and get it detailed information.

Namespace: default

Parameters:

	kwargs: Optional additional arguments for roles creation

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_list_ec2credentials [Scenario]

Create and List all keystone ec2-credentials.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_list_services [Scenario]

Create and list services.

Namespace: default

Parameters:

	service_type: type of the service

	description: description of the service

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_list_tenants [Scenario]

Create a keystone tenant with random name and list all tenants.

Namespace: default

Parameters:

	kwargs: Other optional parameters

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_and_list_users [Scenario]

Create a keystone user with random name and list all users.

Namespace: default

Parameters:

	
	kwargs: Other optional parameters to create users like

	"tenant_id", "enabled".

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_delete_user [Scenario]

Create a keystone user with random name and then delete it.

Namespace: default

Parameters:

	
	kwargs: Other optional parameters to create users like

	"tenant_id", "enabled".

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_tenant [Scenario]

Create a keystone tenant with random name.

Namespace: default

Parameters:

	kwargs: Other optional parameters

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_tenant_with_users [Scenario]

Create a keystone tenant and several users belonging to it.

Namespace: default

Parameters:

	users_per_tenant: number of users to create for the tenant

	kwargs: Other optional parameters for tenant creation

Returns:
keystone tenant instance

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_update_and_delete_tenant [Scenario]

Create, update and delete tenant.

Namespace: default

Parameters:

	kwargs: Other optional parameters for tenant creation

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_user [Scenario]

Create a keystone user with random name.

Namespace: default

Parameters:

	
	kwargs: Other optional parameters to create users like

	"tenant_id", "enabled".

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_user_set_enabled_and_delete [Scenario]

Create a keystone user, enable or disable it, and delete it.

Namespace: default

Parameters:

	
	enabled: Initial state of user 'enabled' flag. The user

	will be created with 'enabled' set to this
value, and then it will be toggled.

	kwargs: Other optional parameters to create user.

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.create_user_update_password [Scenario]

Create user and update password for that user.

Namespace: default

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

KeystoneBasic.get_entities [Scenario]

Get instance of a tenant, user, role and service by id's.

An ephemeral tenant, user, and role are each created. By
default, fetches the 'keystone' service. This can be
overridden (for instance, to get the 'Identity Service'
service on older OpenStack), or None can be passed explicitly
to service_name to create a new service and then query it by
ID.

Namespace: default

Parameters:

	
	service_name: The name of the service to get by ID; or

	None, to create an ephemeral service and
get it by ID.

Module:
rally.plugins.openstack.scenarios.keystone.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/keystone/basic.py]

MagnumClusterTemplates.list_cluster_templates [Scenario]

List all cluster_templates.

Measure the "magnum cluster_template-list" command performance.

Namespace: default

Parameters:

	
	limit: (Optional) The maximum number of results to return

	
per request, if:

	limit > 0, the maximum number of cluster_templates to return.

	limit param is NOT specified (None), the number of items
returned respect the maximum imposed by the Magnum API
(see Magnum's api.max_limit option).

	
	kwargs: optional additional arguments for cluster_templates

	listing

Module:
rally.plugins.openstack.scenarios.magnum.cluster_templates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/magnum/cluster_templates.py]

MagnumClusters.create_and_list_clusters [Scenario]

create cluster and then list all clusters.

Namespace: default

Parameters:

	node_count: the cluster node count.

	
	cluster_template_uuid: optional, if user want to use an existing

	cluster_template

	kwargs: optional additional arguments for cluster creation

Module:
rally.plugins.openstack.scenarios.magnum.clusters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/magnum/clusters.py]

MagnumClusters.list_clusters [Scenario]

List all clusters.

Measure the "magnum clusters-list" command performance.

Namespace: default

Parameters:

	
	limit: (Optional) The maximum number of results to return

	
per request, if:

	limit > 0, the maximum number of clusters to return.

	limit param is NOT specified (None), the number of items
returned respect the maximum imposed by the Magnum API
(see Magnum's api.max_limit option).

	kwargs: optional additional arguments for clusters listing

Module:
rally.plugins.openstack.scenarios.magnum.clusters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/magnum/clusters.py]

ManilaShares.attach_security_service_to_share_network [Scenario]

Attaches security service to share network.

Namespace: default

Parameters:

	
	security_service_type: type of security service to use.

	Should be one of following: 'ldap', 'kerberos' or
'active_directory'.

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.create_and_delete_share [Scenario]

Create and delete a share.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between share creation and deletion
(of random duration from [min_sleep, max_sleep]).

Namespace: default

Parameters:

	
	share_proto: share protocol, valid values are NFS, CIFS,

	GlusterFS and HDFS

	size: share size in GB, should be greater than 0

	min_sleep: minimum sleep time in seconds (non-negative)

	max_sleep: maximum sleep time in seconds (non-negative)

	kwargs: optional args to create a share

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.create_and_list_share [Scenario]

Create a share and list all shares.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between share creation and list
(of random duration from [min_sleep, max_sleep]).

Namespace: default

Parameters:

	
	share_proto: share protocol, valid values are NFS, CIFS,

	GlusterFS and HDFS

	size: share size in GB, should be greater than 0

	min_sleep: minimum sleep time in seconds (non-negative)

	max_sleep: maximum sleep time in seconds (non-negative)

	detailed: defines whether to get detailed list of shares or not

	kwargs: optional args to create a share

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.create_security_service_and_delete [Scenario]

Creates security service and then deletes.

Namespace: default

Parameters:

	
	security_service_type: security service type, permitted values

	are 'ldap', 'kerberos' or 'active_directory'.

	dns_ip: dns ip address used inside tenant's network

	server: security service server ip address or hostname

	domain: security service domain

	user: security identifier used by tenant

	password: password used by user

	description: security service description

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.create_share_network_and_delete [Scenario]

Creates share network and then deletes.

Namespace: default

Parameters:

	neutron_net_id: ID of Neutron network

	neutron_subnet_id: ID of Neutron subnet

	nova_net_id: ID of Nova network

	description: share network description

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.create_share_network_and_list [Scenario]

Creates share network and then lists it.

Namespace: default

Parameters:

	neutron_net_id: ID of Neutron network

	neutron_subnet_id: ID of Neutron subnet

	nova_net_id: ID of Nova network

	description: share network description

	
	detailed: defines either to return detailed list of

	objects or not.

	
	search_opts: container of search opts such as

	"name", "nova_net_id", "neutron_net_id", etc.

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.list_share_servers [Scenario]

Lists share servers.

Requires admin creds.

Namespace: default

Parameters:

	
	search_opts: container of following search opts:

	"host", "status", "share_network" and "project_id".

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.list_shares [Scenario]

Basic scenario for 'share list' operation.

Namespace: default

Parameters:

	
	detailed: defines either to return detailed list of

	objects or not.

	
	search_opts: container of search opts such as

	"name", "host", "share_type", etc.

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

ManilaShares.set_and_delete_metadata [Scenario]

Sets and deletes share metadata.

This requires a share to be created with the shares
context. Additionally, sets * set_size must be greater
than or equal to deletes * delete_size.

Namespace: default

Parameters:

	sets: how many set_metadata operations to perform

	
	set_size: number of metadata keys to set in each

	set_metadata operation

	
	delete_size: number of metadata keys to delete in each

	delete_metadata operation

	key_min_length: minimal size of metadata key to set

	key_max_length: maximum size of metadata key to set

	value_min_length: minimal size of metadata value to set

	value_max_length: maximum size of metadata value to set

Module:
rally.plugins.openstack.scenarios.manila.shares [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/manila/shares.py]

MistralExecutions.create_execution_from_workbook [Scenario]

Scenario tests execution creation and deletion.

This scenario is a very useful tool to measure the
"mistral execution-create" and "mistral execution-delete"
commands performance.

Namespace: default

Parameters:

	
	definition: string (yaml string) representation of given file

	content (Mistral workbook definition)

	
	workflow_name: string the workflow name to execute. Should be

	
	one of the to workflows in the definition. If no

	workflow_name is passed, one of the workflows in
the definition will be taken.

	
	wf_input: file containing a json string of mistral workflow

	input

	
	params: file containing a json string of mistral params

	(the string is the place to pass the environment)

	
	do_delete: if False than it allows to check performance

	in "create only" mode.

Module:
rally.plugins.openstack.scenarios.mistral.executions [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/mistral/executions.py]

MistralExecutions.list_executions [Scenario]

Scenario test mistral execution-list command.

This simple scenario tests the Mistral execution-list
command by listing all the executions.

Namespace: default

Parameters:

	
	marker: The last execution uuid of the previous page, displays

	list of executions after "marker".

	
	limit: number Maximum number of executions to return in a single

	result.

	sort_keys: id,description

	
	sort_dirs: [SORT_DIRS] Comma-separated list of sort directions.

	Default: asc.

Module:
rally.plugins.openstack.scenarios.mistral.executions [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/mistral/executions.py]

MistralWorkbooks.create_workbook [Scenario]

Scenario tests workbook creation and deletion.

This scenario is a very useful tool to measure the
"mistral workbook-create" and "mistral workbook-delete"
commands performance.

Namespace: default

Parameters:

	
	definition: string (yaml string) representation of given

	file content (Mistral workbook definition)

	
	do_delete: if False than it allows to check performance

	in "create only" mode.

Module:
rally.plugins.openstack.scenarios.mistral.workbooks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/mistral/workbooks.py]

MistralWorkbooks.list_workbooks [Scenario]

Scenario test mistral workbook-list command.

This simple scenario tests the Mistral workbook-list
command by listing all the workbooks.

Namespace: default

Module:
rally.plugins.openstack.scenarios.mistral.workbooks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/mistral/workbooks.py]

MonascaMetrics.list_metrics [Scenario]

Fetch user's metrics.

Namespace: default

Parameters:

	
	kwargs: optional arguments for list query:

	name, dimensions, start_time, etc

Module:
rally.plugins.openstack.scenarios.monasca.metrics [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/monasca/metrics.py]

MuranoEnvironments.create_and_delete_environment [Scenario]

Create environment, session and delete environment.

Namespace: default

Module:
rally.plugins.openstack.scenarios.murano.environments [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/environments.py]

MuranoEnvironments.create_and_deploy_environment [Scenario]

Create environment, session and deploy environment.

Create environment, create session, add app to environment
packages_per_env times, send environment to deploy.

Namespace: default

Parameters:

	packages_per_env: number of packages per environment

Module:
rally.plugins.openstack.scenarios.murano.environments [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/environments.py]

MuranoEnvironments.list_environments [Scenario]

List the murano environments.

Run murano environment-list for listing all environments.

Namespace: default

Module:
rally.plugins.openstack.scenarios.murano.environments [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/environments.py]

MuranoPackages.import_and_delete_package [Scenario]

Import Murano package and then delete it.

Measure the "murano import-package" and "murano package-delete"
commands performance.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared) and deletes it.

Namespace: default

Parameters:

	
	package: path to zip archive that represents Murano

	application package or absolute path to folder with
package components

Module:
rally.plugins.openstack.scenarios.murano.packages [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/packages.py]

MuranoPackages.import_and_filter_applications [Scenario]

Import Murano package and then filter packages by some criteria.

Measure the performance of package import and package
filtering commands.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared) and filters packages by some
criteria.

Namespace: default

Parameters:

	
	package: path to zip archive that represents Murano

	application package or absolute path to folder with
package components

	
	filter_query: dict that contains filter criteria, lately it

	will be passed as **kwargs to filter method
e.g. {"category": "Web"}

Module:
rally.plugins.openstack.scenarios.murano.packages [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/packages.py]

MuranoPackages.import_and_list_packages [Scenario]

Import Murano package and get list of packages.

Measure the "murano import-package" and "murano package-list" commands
performance.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared) and gets list of imported packages.

Namespace: default

Parameters:

	
	package: path to zip archive that represents Murano

	application package or absolute path to folder with
package components

	
	include_disabled: specifies whether the disabled packages will

	be included in a the result or not.
Default value is False.

Module:
rally.plugins.openstack.scenarios.murano.packages [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/packages.py]

MuranoPackages.package_lifecycle [Scenario]

Import Murano package, modify it and then delete it.

Measure the Murano import, update and delete package
commands performance.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared), modifies it (using data from
"body") and deletes.

Namespace: default

Parameters:

	
	package: path to zip archive that represents Murano

	application package or absolute path to folder with
package components

	
	body: dict object that defines what package property will be

	updated, e.g {"tags": ["tag"]} or {"enabled": "true"}

	
	operation: string object that defines the way of how package

	property will be updated, allowed operations are
"add", "replace" or "delete".
Default value is "replace".

Module:
rally.plugins.openstack.scenarios.murano.packages [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/murano/packages.py]

NeutronLoadbalancerV1.create_and_delete_healthmonitors [Scenario]

Create a healthmonitor(v1) and delete healthmonitors(v1).

Measure the "neutron lb-healthmonitor-create" and "neutron
lb-healthmonitor-delete" command performance. The scenario creates
healthmonitors and deletes those healthmonitors.

Namespace: default

Parameters:

	healthmonitor_create_args: dict, POST /lb/healthmonitors request

options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_delete_pools [Scenario]

Create pools(v1) and delete pools(v1).

Measure the "neutron lb-pool-create" and "neutron lb-pool-delete"
command performance. The scenario creates a pool for every subnet
and then deletes those pools.

Namespace: default

Parameters:

	pool_create_args: dict, POST /lb/pools request options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_delete_vips [Scenario]

Create a vip(v1) and then delete vips(v1).

Measure the "neutron lb-vip-create" and "neutron lb-vip-delete"
command performance. The scenario creates a vip for pool and
then deletes those vips.

Namespace: default

Parameters:

	pool_create_args: dict, POST /lb/pools request options

	vip_create_args: dict, POST /lb/vips request options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_list_healthmonitors [Scenario]

Create healthmonitors(v1) and list healthmonitors(v1).

Measure the "neutron lb-healthmonitor-list" command performance. This
scenario creates healthmonitors and lists them.

Namespace: default

Parameters:

	healthmonitor_create_args: dict, POST /lb/healthmonitors request

options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_list_pools [Scenario]

Create a pool(v1) and then list pools(v1).

Measure the "neutron lb-pool-list" command performance.
The scenario creates a pool for every subnet and then lists pools.

Namespace: default

Parameters:

	pool_create_args: dict, POST /lb/pools request options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_list_vips [Scenario]

Create a vip(v1) and then list vips(v1).

Measure the "neutron lb-vip-create" and "neutron lb-vip-list" command
performance. The scenario creates a vip for every pool created and
then lists vips.

Namespace: default

Parameters:

	vip_create_args: dict, POST /lb/vips request options

	pool_create_args: dict, POST /lb/pools request options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_update_healthmonitors [Scenario]

Create a healthmonitor(v1) and update healthmonitors(v1).

Measure the "neutron lb-healthmonitor-create" and "neutron
lb-healthmonitor-update" command performance. The scenario creates
healthmonitors and then updates them.

Namespace: default

Parameters:

	healthmonitor_create_args: dict, POST /lb/healthmonitors request

options

	healthmonitor_update_args: dict, POST /lb/healthmonitors update

options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_update_pools [Scenario]

Create pools(v1) and update pools(v1).

Measure the "neutron lb-pool-create" and "neutron lb-pool-update"
command performance. The scenario creates a pool for every subnet
and then update those pools.

Namespace: default

Parameters:

	pool_create_args: dict, POST /lb/pools request options

	pool_update_args: dict, POST /lb/pools update options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV1.create_and_update_vips [Scenario]

Create vips(v1) and update vips(v1).

Measure the "neutron lb-vip-create" and "neutron lb-vip-update"
command performance. The scenario creates a pool for every subnet
and then update those pools.

Namespace: default

Parameters:

	pool_create_args: dict, POST /lb/pools request options

	vip_create_args: dict, POST /lb/vips request options

	vip_update_args: dict, POST /lb/vips update options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v1.py]

NeutronLoadbalancerV2.create_and_list_loadbalancers [Scenario]

Create a loadbalancer(v2) and then list loadbalancers(v2).

Measure the "neutron lbaas-loadbalancer-list" command performance.
The scenario creates a loadbalancer for every subnet and then lists
loadbalancers.

Namespace: default

Parameters:

	
	loadbalancer_create_args: dict, POST /lbaas/loadbalancers

	request options

Module:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v2 [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/loadbalancer_v2.py]

NeutronNetworks.create_and_delete_floating_ips [Scenario]

Create and delete floating IPs.

Measure the "neutron floating-ip-create" and "neutron
floating-ip-delete" commands performance.

Namespace: default

Parameters:

	floating_network: str, external network for floating IP creation

	floating_ip_args: dict, POST /floatingips request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_delete_networks [Scenario]

Create and delete a network.

Measure the "neutron net-create" and "net-delete" command performance.

Namespace: default

Parameters:

	network_create_args: dict, POST /v2.0/networks request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_delete_ports [Scenario]

Create and delete a port.

Measure the "neutron port-create" and "neutron port-delete"
commands performance.

Namespace: default

Parameters:

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	port_create_args: dict, POST /v2.0/ports request options

	ports_per_network: int, number of ports for one network

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_delete_routers [Scenario]

Create and delete a given number of routers.

Create a network, a given number of subnets and routers
and then delete all routers.

Namespace: default

Parameters:

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	subnet_create_args: dict, POST /v2.0/subnets request options

	subnet_cidr_start: str, start value for subnets CIDR

	subnets_per_network: int, number of subnets for one network

	router_create_args: dict, POST /v2.0/routers request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_delete_subnets [Scenario]

Create and delete a given number of subnets.

The scenario creates a network, a given number of subnets and then
deletes subnets.

Namespace: default

Parameters:

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	subnet_create_args: dict, POST /v2.0/subnets request options

	subnet_cidr_start: str, start value for subnets CIDR

	subnets_per_network: int, number of subnets for one network

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_list_floating_ips [Scenario]

Create and list floating IPs.

Measure the "neutron floating-ip-create" and "neutron floating-ip-list"
commands performance.

Namespace: default

Parameters:

	floating_network: str, external network for floating IP creation

	floating_ip_args: dict, POST /floatingips request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_list_networks [Scenario]

Create a network and then list all networks.

Measure the "neutron net-list" command performance.

If you have only 1 user in your context, you will
add 1 network on every iteration. So you will have more
and more networks and will be able to measure the
performance of the "neutron net-list" command depending on
the number of networks owned by users.

Namespace: default

Parameters:

	network_create_args: dict, POST /v2.0/networks request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_list_ports [Scenario]

Create and a given number of ports and list all ports.

Namespace: default

Parameters:

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	port_create_args: dict, POST /v2.0/ports request options

	ports_per_network: int, number of ports for one network

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_list_routers [Scenario]

Create and a given number of routers and list all routers.

Create a network, a given number of subnets and routers
and then list all routers.

Namespace: default

Parameters:

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	subnet_create_args: dict, POST /v2.0/subnets request options

	subnet_cidr_start: str, start value for subnets CIDR

	subnets_per_network: int, number of subnets for one network

	router_create_args: dict, POST /v2.0/routers request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_list_subnets [Scenario]

Create and a given number of subnets and list all subnets.

The scenario creates a network, a given number of subnets and then
lists subnets.

Namespace: default

Parameters:

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated

	subnet_create_args: dict, POST /v2.0/subnets request options

	subnet_cidr_start: str, start value for subnets CIDR

	subnets_per_network: int, number of subnets for one network

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_show_network [Scenario]

Create a network and show network details.

Measure the "neutron net-show" command performance.

Namespace: default

Parameters:

	network_create_args: dict, POST /v2.0/networks request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_update_networks [Scenario]

Create and update a network.

Measure the "neutron net-create and net-update" command performance.

Namespace: default

Parameters:

	network_update_args: dict, PUT /v2.0/networks update request

	network_create_args: dict, POST /v2.0/networks request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_update_ports [Scenario]

Create and update a given number of ports.

Measure the "neutron port-create" and "neutron port-update" commands
performance.

Namespace: default

Parameters:

	port_update_args: dict, PUT /v2.0/ports update request options

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	port_create_args: dict, POST /v2.0/ports request options

	ports_per_network: int, number of ports for one network

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_update_routers [Scenario]

Create and update a given number of routers.

Create a network, a given number of subnets and routers
and then updating all routers.

Namespace: default

Parameters:

	router_update_args: dict, PUT /v2.0/routers update options

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	subnet_create_args: dict, POST /v2.0/subnets request options

	subnet_cidr_start: str, start value for subnets CIDR

	subnets_per_network: int, number of subnets for one network

	router_create_args: dict, POST /v2.0/routers request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.create_and_update_subnets [Scenario]

Create and update a subnet.

The scenario creates a network, a given number of subnets
and then updates the subnet. This scenario measures the
"neutron subnet-update" command performance.

Namespace: default

Parameters:

	subnet_update_args: dict, PUT /v2.0/subnets update options

	
	network_create_args: dict, POST /v2.0/networks request

	options. Deprecated.

	subnet_create_args: dict, POST /v2.0/subnets request options

	subnet_cidr_start: str, start value for subnets CIDR

	subnets_per_network: int, number of subnets for one network

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronNetworks.list_agents [Scenario]

List all neutron agents.

This simple scenario tests the "neutron agent-list" command by
listing all the neutron agents.

Namespace: default

Parameters:

	agent_args: dict, POST /v2.0/agents request options

Module:
rally.plugins.openstack.scenarios.neutron.network [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/network.py]

NeutronSecurityGroup.create_and_delete_security_groups [Scenario]

Create and delete Neutron security-groups.

Measure the "neutron security-group-create" and "neutron
security-group-delete" command performance.

Namespace: default

Parameters:

	
	security_group_create_args: dict, POST /v2.0/security-groups

	request options

Module:
rally.plugins.openstack.scenarios.neutron.security_groups [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/security_groups.py]

NeutronSecurityGroup.create_and_list_security_groups [Scenario]

Create and list Neutron security-groups.

Measure the "neutron security-group-create" and "neutron
security-group-list" command performance.

Namespace: default

Parameters:

	
	security_group_create_args: dict, POST /v2.0/security-groups

	request options

Module:
rally.plugins.openstack.scenarios.neutron.security_groups [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/security_groups.py]

NeutronSecurityGroup.create_and_update_security_groups [Scenario]

Create and update Neutron security-groups.

Measure the "neutron security-group-create" and "neutron
security-group-update" command performance.

Namespace: default

Parameters:

	
	security_group_create_args: dict, POST /v2.0/security-groups

	request options

	
	security_group_update_args: dict, PUT /v2.0/security-groups

	update options

Module:
rally.plugins.openstack.scenarios.neutron.security_groups [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/neutron/security_groups.py]

NovaAgents.list_agents [Scenario]

List all builds.

Measure the "nova agent-list" command performance.

Namespace: default

Parameters:

	
	hypervisor: List agent builds on a specific hypervisor.

	None (default value) means list for all
hypervisors

Module:
rally.plugins.openstack.scenarios.nova.agents [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/agents.py]

NovaAggregates.create_aggregate_add_and_remove_host [Scenario]

Create an aggregate, add a host to and remove the host from it

Measure "nova aggregate-add-host" and "nova aggregate-remove-host"
command performance.

Namespace: default

Parameters:

	availability_zone: The availability zone of the aggregate

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAggregates.create_aggregate_add_host_and_boot_server [Scenario]

Scenario to create and verify an aggregate

This scenario creates an aggregate, adds a compute host and metadata
to the aggregate, adds the same metadata to the flavor and creates an
instance. Verifies that instance host is one of the hosts in the
aggregate.

Namespace: default

Parameters:

	image: The image ID to boot from

	metadata: The metadata to be set as flavor extra specs

	availability_zone: The availability zone of the aggregate

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	boot_server_kwargs: Optional additional arguments to verify host

aggregates

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAggregates.create_and_delete_aggregate [Scenario]

Create an aggregate and then delete it.

This scenario first creates an aggregate and then delete it.

Namespace: default

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAggregates.create_and_get_aggregate_details [Scenario]

Create an aggregate and then get its details.

This scenario first creates an aggregate and then get details of it.

Namespace: default

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAggregates.create_and_list_aggregates [Scenario]

Create a aggregate and then list all aggregates.

This scenario creates a aggregate and then lists all aggregates.

Namespace: default

Parameters:

	availability_zone: The availability zone of the aggregate

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAggregates.create_and_update_aggregate [Scenario]

Create an aggregate and then update its name and availability_zone

This scenario first creates an aggregate and then update its name and
availability_zone

Namespace: default

Parameters:

	availability_zone: The availability zone of the aggregate

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAggregates.list_aggregates [Scenario]

List all nova aggregates.

Measure the "nova aggregate-list" command performance.

Namespace: default

Module:
rally.plugins.openstack.scenarios.nova.aggregates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/aggregates.py]

NovaAvailabilityZones.list_availability_zones [Scenario]

List all availability zones.

Measure the "nova availability-zone-list" command performance.

Namespace: default

Parameters:

	
	detailed: True if the availability-zone listing should contain

	detailed information about all of them

Module:
rally.plugins.openstack.scenarios.nova.availability_zones [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/availability_zones.py]

NovaFlavors.create_and_delete_flavor [Scenario]

Create flavor and delete the flavor.

Namespace: default

Parameters:

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	kwargs: Optional additional arguments for flavor creation

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFlavors.create_and_get_flavor [Scenario]

Create flavor and get detailed information of the flavor.

Namespace: default

Parameters:

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	kwargs: Optional additional arguments for flavor creation

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFlavors.create_and_list_flavor_access [Scenario]

Create a non-public flavor and list its access rules

Namespace: default

Parameters:

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	kwargs: Optional additional arguments for flavor creation

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFlavors.create_flavor [Scenario]

Create a flavor.

Namespace: default

Parameters:

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	kwargs: Optional additional arguments for flavor creation

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFlavors.create_flavor_and_add_tenant_access [Scenario]

Create a flavor and Add flavor access for the given tenant.

Namespace: default

Parameters:

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	kwargs: Optional additional arguments for flavor creation

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFlavors.create_flavor_and_set_keys [Scenario]

Create flavor and set keys to the flavor.

Measure the "nova flavor-key" command performance.
the scenario first create a flavor,then add the extra specs to it.

Namespace: default

Parameters:

	ram: Memory in MB for the flavor

	vcpus: Number of VCPUs for the flavor

	disk: Size of local disk in GB

	extra_specs: additional arguments for flavor set keys

	kwargs: Optional additional arguments for flavor creation

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFlavors.list_flavors [Scenario]

List all flavors.

Measure the "nova flavor-list" command performance.

Namespace: default

Parameters:

	
	detailed: True if the flavor listing

	should contain detailed information

	kwargs: Optional additional arguments for flavor listing

Module:
rally.plugins.openstack.scenarios.nova.flavors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/flavors.py]

NovaFloatingIpsBulk.create_and_delete_floating_ips_bulk [Scenario]

Create nova floating IP by range and delete it.

This scenario creates a floating IP by range and then delete it.

Namespace: default

Parameters:

	start_cidr: Floating IP range

	kwargs: Optional additional arguments for range IP creation

Module:
rally.plugins.openstack.scenarios.nova.floating_ips_bulk [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/floating_ips_bulk.py]

NovaFloatingIpsBulk.create_and_list_floating_ips_bulk [Scenario]

Create nova floating IP by range and list it.

This scenario creates a floating IP by range and then lists all.

Namespace: default

Parameters:

	start_cidr: Floating IP range

	kwargs: Optional additional arguments for range IP creation

Module:
rally.plugins.openstack.scenarios.nova.floating_ips_bulk [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/floating_ips_bulk.py]

NovaHosts.list_and_get_hosts [Scenario]

List all nova hosts,and get detailed information fot this hosts.

Measure the "nova host-describe" command performance.

Namespace: default

Parameters:

	
	zone: List nova hosts in an availability-zone.

	None (default value) means list hosts in all
availability-zones

Module:
rally.plugins.openstack.scenarios.nova.hosts [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hosts.py]

NovaHosts.list_hosts [Scenario]

List all nova hosts.

Measure the "nova host-list" command performance.

Namespace: default

Parameters:

	
	zone: List nova hosts in an availability-zone.

	None (default value) means list hosts in all
availability-zones

Module:
rally.plugins.openstack.scenarios.nova.hosts [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hosts.py]

NovaHypervisors.list_and_get_hypervisors [Scenario]

List and Get hypervisors.

The scenario first lists all hypervisors, then get detailed information
of the listed hypervisors in turn.

Measure the "nova hypervisor-show" command performance.

Namespace: default

Parameters:

	
	detailed: True if the hypervisor listing should contain

	detailed information about all of them

Module:
rally.plugins.openstack.scenarios.nova.hypervisors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hypervisors.py]

NovaHypervisors.list_and_get_uptime_hypervisors [Scenario]

List hypervisors,then display the uptime of it.

The scenario first list all hypervisors,then display
the uptime of the listed hypervisors in turn.

Measure the "nova hypervisor-uptime" command performance.

Namespace: default

Parameters:

	
	detailed: True if the hypervisor listing should contain

	detailed information about all of them

Module:
rally.plugins.openstack.scenarios.nova.hypervisors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hypervisors.py]

NovaHypervisors.list_and_search_hypervisors [Scenario]

List all servers belonging to specific hypervisor.

The scenario first list all hypervisors,then find its hostname,
then list all servers belonging to the hypervisor

Measure the "nova hypervisor-servers <hostname>" command performance.

Namespace: default

Parameters:

	
	detailed: True if the hypervisor listing should contain

	detailed information about all of them

Module:
rally.plugins.openstack.scenarios.nova.hypervisors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hypervisors.py]

NovaHypervisors.list_hypervisors [Scenario]

List hypervisors.

Measure the "nova hypervisor-list" command performance.

Namespace: default

Parameters:

	
	detailed: True if the hypervisor listing should contain

	detailed information about all of them

Module:
rally.plugins.openstack.scenarios.nova.hypervisors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hypervisors.py]

NovaHypervisors.statistics_hypervisors [Scenario]

Get hypervisor statistics over all compute nodes.

Measure the "nova hypervisor-stats" command performance.

Namespace: default

Module:
rally.plugins.openstack.scenarios.nova.hypervisors [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/hypervisors.py]

NovaImages.list_images [Scenario]

List all images.

Measure the "nova image-list" command performance.

Namespace: default

Parameters:

	
	detailed: True if the image listing

	should contain detailed information

	kwargs: Optional additional arguments for image listing

Module:
rally.plugins.openstack.scenarios.nova.images [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/images.py]

NovaKeypair.boot_and_delete_server_with_keypair [Scenario]

Boot and delete server with keypair.

	Plan of this scenario:

	
	create a keypair

	boot a VM with created keypair

	delete server

	delete keypair

Namespace: default

Parameters:

	image: ID of the image to be used for server creation

	flavor: ID of the flavor to be used for server creation

	
	boot_server_kwargs: Optional additional arguments for VM

	creation

	server_kwargs: Deprecated alias for boot_server_kwargs

	kwargs: Optional additional arguments for keypair creation

Module:
rally.plugins.openstack.scenarios.nova.keypairs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/keypairs.py]

NovaKeypair.create_and_delete_keypair [Scenario]

Create a keypair with random name and delete keypair.

This scenario creates a keypair and then delete that keypair.

Namespace: default

Parameters:

	kwargs: Optional additional arguments for keypair creation

Module:
rally.plugins.openstack.scenarios.nova.keypairs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/keypairs.py]

NovaKeypair.create_and_list_keypairs [Scenario]

Create a keypair with random name and list keypairs.

This scenario creates a keypair and then lists all keypairs.

Namespace: default

Parameters:

	kwargs: Optional additional arguments for keypair creation

Module:
rally.plugins.openstack.scenarios.nova.keypairs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/keypairs.py]

NovaNetworks.create_and_delete_network [Scenario]

Create nova network and delete it.

Namespace: default

Parameters:

	start_cidr: IP range

	kwargs: Optional additional arguments for network creation

Module:
rally.plugins.openstack.scenarios.nova.networks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/networks.py]

NovaNetworks.create_and_list_networks [Scenario]

Create nova network and list all networks.

Namespace: default

Parameters:

	start_cidr: IP range

	kwargs: Optional additional arguments for network creation

Module:
rally.plugins.openstack.scenarios.nova.networks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/networks.py]

NovaSecGroup.boot_and_delete_server_with_secgroups [Scenario]

Boot and delete server with security groups attached.

	Plan of this scenario:

	
	create N security groups with M rules per group
vm with security groups)

	boot a VM with created security groups

	get list of attached security groups to server

	delete server

	delete all security groups

	check that all groups were attached to server

Namespace: default

Parameters:

	image: ID of the image to be used for server creation

	flavor: ID of the flavor to be used for server creation

	security_group_count: Number of security groups

	rules_per_security_group: Number of rules per security group

	**kwargs: Optional arguments for booting the instance

Module:
rally.plugins.openstack.scenarios.nova.security_group [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/security_group.py]

NovaSecGroup.boot_server_and_add_secgroups [Scenario]

Boot a server and add a security group to it.

	Plan of this scenario:

	
	create N security groups with M rules per group

	boot a VM

	add security groups to VM

Namespace: default

Parameters:

	image: ID of the image to be used for server creation

	flavor: ID of the flavor to be used for server creation

	security_group_count: Number of security groups

	rules_per_security_group: Number of rules per security group

	**kwargs: Optional arguments for booting the instance

Module:
rally.plugins.openstack.scenarios.nova.security_group [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/security_group.py]

NovaSecGroup.create_and_delete_secgroups [Scenario]

Create and delete security groups.

This scenario creates N security groups with M rules per group and then
deletes them.

Namespace: default

Parameters:

	security_group_count: Number of security groups

	rules_per_security_group: Number of rules per security group

Module:
rally.plugins.openstack.scenarios.nova.security_group [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/security_group.py]

NovaSecGroup.create_and_list_secgroups [Scenario]

Create and list security groups.

This scenario creates N security groups with M rules per group and then
lists them.

Namespace: default

Parameters:

	security_group_count: Number of security groups

	rules_per_security_group: Number of rules per security group

Module:
rally.plugins.openstack.scenarios.nova.security_group [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/security_group.py]

NovaSecGroup.create_and_update_secgroups [Scenario]

Create and update security groups.

This scenario creates 'security_group_count' security groups
then updates their name and description.

Namespace: default

Parameters:

	security_group_count: Number of security groups

Module:
rally.plugins.openstack.scenarios.nova.security_group [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/security_group.py]

NovaServerGroups.create_and_list_server_groups [Scenario]

Create a server group, then list all server groups.

Measure the "nova server-group-create" and "nova server-group-list"
command performance.

Namespace: default

Parameters:

	
	all_projects: If True, display server groups from all

	projects(Admin only)

	kwargs: Server group name and policy

Module:
rally.plugins.openstack.scenarios.nova.server_groups [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/server_groups.py]

NovaServers.boot_and_associate_floating_ip [Scenario]

Boot a server and associate a floating IP to it.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_bounce_server [Scenario]

Boot a server and run specified actions against it.

Actions should be passed into the actions parameter. Available actions
are 'hard_reboot', 'soft_reboot', 'stop_start', 'rescue_unrescue',
'pause_unpause', 'suspend_resume', 'lock_unlock' and 'shelve_unshelve'.
Delete server after all actions were completed.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	force_delete: True if force_delete should be used

	
	actions: list of action dictionaries, where each action

	dictionary speicifes an action to be performed
in the following format:
{"action_name": <no_of_iterations>}

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_delete_multiple_servers [Scenario]

Boot multiple servers in a single request and delete them.

Deletion is done in parallel with one request per server, not
with a single request for all servers.

Namespace: default

Parameters:

	image: The image to boot from

	flavor: Flavor used to boot instance

	count: Number of instances to boot

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for instance creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_delete_server [Scenario]

Boot and delete a server.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between volume creation and deletion
(of random duration from [min_sleep, max_sleep]).

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_get_console_output [Scenario]

Get text console output from server.

This simple scenario tests the nova console-log command by retrieving
the text console log output.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	
	length: The number of tail log lines you would like to retrieve.

	None (default value) or -1 means unlimited length.

	kwargs: Optional additional arguments for server creation

Returns:
Text console log output for server

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_list_server [Scenario]

Boot a server from an image and then list all servers.

Measure the "nova list" command performance.

If you have only 1 user in your context, you will
add 1 server on every iteration. So you will have more
and more servers and will be able to measure the
performance of the "nova list" command depending on
the number of servers owned by users.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	
	detailed: True if the server listing should contain

	detailed information about all of them

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_live_migrate_server [Scenario]

Live Migrate a server.

This scenario launches a VM on a compute node available in
the availability zone and then migrates the VM to another
compute node on the same availability zone.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between VM booting and running live migration
(of random duration from range [min_sleep, max_sleep]).

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	block_migration: Specifies the migration type

	
	disk_over_commit: Specifies whether to allow overcommit

	on migrated instance or not

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_migrate_server [Scenario]

Migrate a server.

This scenario launches a VM on a compute node available in
the availability zone, and then migrates the VM
to another compute node on the same availability zone.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_rebuild_server [Scenario]

Rebuild a server.

This scenario launches a VM, then rebuilds that VM with a
different image.

Namespace: default

Parameters:

	from_image: image to be used to boot an instance

	to_image: image to be used to rebuild the instance

	flavor: flavor to be used to boot an instance

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_show_server [Scenario]

Show server details.

This simple scenario tests the nova show command by retrieving
the server details.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	kwargs: Optional additional arguments for server creation

Returns:
Server details

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_and_update_server [Scenario]

Boot a server, then update its name and description.

The scenario first creates a server, then update it.
Assumes that cleanup is done elsewhere.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	description: update the server description

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_lock_unlock_and_delete [Scenario]

Boot a server, lock it, then unlock and delete it.

Optional 'min_sleep' and 'max_sleep' parameters allow the
scenario to simulate a pause between locking and unlocking the
server (of random duration from min_sleep to max_sleep).

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	
	min_sleep: Minimum sleep time between locking and unlocking

	in seconds

	
	max_sleep: Maximum sleep time between locking and unlocking

	in seconds

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server [Scenario]

Boot a server.

Assumes that cleanup is done elsewhere.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	auto_assign_nic: True if NICs should be assigned

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_associate_and_dissociate_floating_ip [Scenario]

Boot a server associate and dissociate a floating IP from it.

The scenario first boot a server and create a floating IP. then
associate the floating IP to the server.Finally dissociate the floating
IP.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_attach_created_volume_and_live_migrate [Scenario]

Create a VM, attach a volume to it and live migrate.

Simple test to create a VM and attach a volume, then migrate the VM,
detach the volume and delete volume/VM.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between attaching a volume and running live
migration (of random duration from range [min_sleep, max_sleep]).

Namespace: default

Parameters:

	image: Glance image name to use for the VM

	flavor: VM flavor name

	size: volume size (in GB)

	block_migration: Specifies the migration type

	
	disk_over_commit: Specifies whether to allow overcommit

	on migrated instance or not

	boot_server_kwargs: optional arguments for VM creation

	create_volume_kwargs: optional arguments for volume creation

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_attach_created_volume_and_resize [Scenario]

Create a VM from image, attach a volume to it and resize.

Simple test to create a VM and attach a volume, then resize the VM,
detach the volume then delete volume and VM.
Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between attaching a volume and running resize
(of random duration from range [min_sleep, max_sleep]).

Namespace: default

Parameters:

	image: Glance image name to use for the VM

	flavor: VM flavor name

	to_flavor: flavor to be used to resize the booted instance

	volume_size: volume size (in GB)

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	force_delete: True if force_delete should be used

	confirm: True if need to confirm resize else revert resize

	
	do_delete: True if resources needs to be deleted explicitly

	else use rally cleanup to remove resources

	boot_server_kwargs: optional arguments for VM creation

	create_volume_kwargs: optional arguments for volume creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_from_volume [Scenario]

Boot a server from volume.

The scenario first creates a volume and then a server.
Assumes that cleanup is done elsewhere.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	volume_size: volume size (in GB)

	
	volume_type: specifies volume type when there are

	multiple backends

	auto_assign_nic: True if NICs should be assigned

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_from_volume_and_delete [Scenario]

Boot a server from volume and then delete it.

The scenario first creates a volume and then a server.
Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between volume creation and deletion
(of random duration from [min_sleep, max_sleep]).

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	volume_size: volume size (in GB)

	
	volume_type: specifies volume type when there are

	multiple backends

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_from_volume_and_live_migrate [Scenario]

Boot a server from volume and then migrate it.

The scenario first creates a volume and a server booted from
the volume on a compute node available in the availability zone and
then migrates the VM to another compute node on the same availability
zone.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between VM booting and running live migration
(of random duration from range [min_sleep, max_sleep]).

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	volume_size: volume size (in GB)

	
	volume_type: specifies volume type when there are

	multiple backends

	block_migration: Specifies the migration type

	
	disk_over_commit: Specifies whether to allow overcommit

	on migrated instance or not

	force_delete: True if force_delete should be used

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_from_volume_and_resize [Scenario]

Boot a server from volume, then resize and delete it.

The scenario first creates a volume and then a server.
Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between volume creation and deletion
(of random duration from [min_sleep, max_sleep]).

This test will confirm the resize by default,
or revert the resize if confirm is set to false.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	to_flavor: flavor to be used to resize the booted instance

	volume_size: volume size (in GB)

	min_sleep: Minimum sleep time in seconds (non-negative)

	max_sleep: Maximum sleep time in seconds (non-negative)

	force_delete: True if force_delete should be used

	confirm: True if need to confirm resize else revert resize

	
	do_delete: True if resources needs to be deleted explicitly

	else use rally cleanup to remove resources

	boot_server_kwargs: optional arguments for VM creation

	create_volume_kwargs: optional arguments for volume creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.boot_server_from_volume_snapshot [Scenario]

Boot a server from a snapshot.

The scenario first creates a volume and creates a
snapshot from this volume, then boots a server from
the created snapshot.
Assumes that cleanup is done elsewhere.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	volume_size: volume size (in GB)

	
	volume_type: specifies volume type when there are

	multiple backends

	auto_assign_nic: True if NICs should be assigned

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.list_servers [Scenario]

List all servers.

This simple scenario test the nova list command by listing
all the servers.

Namespace: default

Parameters:

	
	detailed: True if detailed information about servers

	should be listed

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.pause_and_unpause_server [Scenario]

Create a server, pause, unpause and then delete it

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.resize_server [Scenario]

Boot a server, then resize and delete it.

This test will confirm the resize by default,
or revert the resize if confirm is set to false.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	to_flavor: flavor to be used to resize the booted instance

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.shelve_and_unshelve_server [Scenario]

Create a server, shelve, unshelve and then delete it

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.snapshot_server [Scenario]

Boot a server, make its snapshot and delete both.

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServers.suspend_and_resume_server [Scenario]

Create a server, suspend, resume and then delete it

Namespace: default

Parameters:

	image: image to be used to boot an instance

	flavor: flavor to be used to boot an instance

	force_delete: True if force_delete should be used

	kwargs: Optional additional arguments for server creation

Module:
rally.plugins.openstack.scenarios.nova.servers [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/servers.py]

NovaServices.list_services [Scenario]

List all nova services.

Measure the "nova service-list" command performance.

Namespace: default

Parameters:

	host: List nova services on host

	binary: List nova services matching given binary

Module:
rally.plugins.openstack.scenarios.nova.services [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/nova/services.py]

Quotas.cinder_get [Scenario]

Get quotas for Cinder.

Measure the "cinder quota-show" command performance

Namespace: default

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

Quotas.cinder_update [Scenario]

Update quotas for Cinder.

Namespace: default

Parameters:

	max_quota: Max value to be updated for quota.

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

Quotas.cinder_update_and_delete [Scenario]

Update and Delete quotas for Cinder.

Namespace: default

Parameters:

	max_quota: Max value to be updated for quota.

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

Quotas.neutron_update [Scenario]

Update quotas for neutron.

Namespace: default

Parameters:

	max_quota: Max value to be updated for quota.

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

Quotas.nova_get [Scenario]

Get quotas for nova.

Namespace: default

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

Quotas.nova_update [Scenario]

Update quotas for Nova.

Namespace: default

Parameters:

	max_quota: Max value to be updated for quota.

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

Quotas.nova_update_and_delete [Scenario]

Update and delete quotas for Nova.

Namespace: default

Parameters:

	max_quota: Max value to be updated for quota.

Module:
rally.plugins.openstack.scenarios.quotas.quotas [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/quotas/quotas.py]

SaharaClusters.create_and_delete_cluster [Scenario]

Launch and delete a Sahara Cluster.

This scenario launches a Hadoop cluster, waits until it becomes
'Active' and deletes it.

Namespace: default

Parameters:

	
	flavor: Nova flavor that will be for nodes in the

	created node groups. Deprecated.

	
	master_flavor: Nova flavor that will be used for the master

	instance of the cluster

	
	worker_flavor: Nova flavor that will be used for the workers of

	the cluster

	workers_count: number of worker instances in a cluster

	plugin_name: name of a provisioning plugin

	
	hadoop_version: version of Hadoop distribution supported by

	the specified plugin.

	
	floating_ip_pool: floating ip pool name from which Floating

	IPs will be allocated. Sahara will determine
automatically how to treat this depending on
its own configurations. Defaults to None
because in some cases Sahara may work w/o
Floating IPs.

	
	volumes_per_node: number of Cinder volumes that will be

	attached to every cluster node

	volumes_size: size of each Cinder volume in GB

	
	auto_security_group: boolean value. If set to True Sahara will

	create a Security Group for each Node Group
in the Cluster automatically.

	
	security_groups: list of security groups that will be used

	while creating VMs. If auto_security_group
is set to True, this list can be left empty.

	
	node_configs: config dict that will be passed to each Node

	Group

	
	cluster_configs: config dict that will be passed to the

	Cluster

	
	enable_anti_affinity: If set to true the vms will be scheduled

	one per compute node.

	
	enable_proxy: Use Master Node of a Cluster as a Proxy node and

	do not assign floating ips to workers.

	
	use_autoconfig: If True, instances of the node group will be

	automatically configured during cluster
creation. If False, the configuration values
should be specify manually

Module:
rally.plugins.openstack.scenarios.sahara.clusters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/clusters.py]

SaharaClusters.create_scale_delete_cluster [Scenario]

Launch, scale and delete a Sahara Cluster.

This scenario launches a Hadoop cluster, waits until it becomes
'Active'. Then a series of scale operations is applied. The scaling
happens according to numbers listed in

Namespace: default

Parameters:

	
	flavor: Nova flavor that will be for nodes in the

	created node groups. Deprecated.

	
	master_flavor: Nova flavor that will be used for the master

	instance of the cluster

	
	worker_flavor: Nova flavor that will be used for the workers of

	the cluster

	workers_count: number of worker instances in a cluster

	plugin_name: name of a provisioning plugin

	
	hadoop_version: version of Hadoop distribution supported by

	the specified plugin.

	
	deltas: list of integers which will be used to add or

	remove worker nodes from the cluster

	
	floating_ip_pool: floating ip pool name from which Floating

	IPs will be allocated. Sahara will determine
automatically how to treat this depending on
its own configurations. Defaults to None
because in some cases Sahara may work w/o
Floating IPs.

	
	neutron_net_id: id of a Neutron network that will be used

	for fixed IPs. This parameter is ignored when
Nova Network is set up.

	
	volumes_per_node: number of Cinder volumes that will be

	attached to every cluster node

	volumes_size: size of each Cinder volume in GB

	
	auto_security_group: boolean value. If set to True Sahara will

	create a Security Group for each Node Group
in the Cluster automatically.

	
	security_groups: list of security groups that will be used

	while creating VMs. If auto_security_group
is set to True this list can be left empty.

	
	node_configs: configs dict that will be passed to each Node

	Group

	
	cluster_configs: configs dict that will be passed to the

	Cluster

	
	enable_anti_affinity: If set to true the vms will be scheduled

	one per compute node.

	
	enable_proxy: Use Master Node of a Cluster as a Proxy node and

	do not assign floating ips to workers.

	
	use_autoconfig: If True, instances of the node group will be

	automatically configured during cluster
creation. If False, the configuration values
should be specify manually

Module:
rally.plugins.openstack.scenarios.sahara.clusters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/clusters.py]

SaharaJob.create_launch_job [Scenario]

Create and execute a Sahara EDP Job.

This scenario Creates a Job entity and launches an execution on a
Cluster.

Namespace: default

Parameters:

	job_type: type of the Data Processing Job

	configs: config dict that will be passed to a Job Execution

	
	job_idx: index of a job in a sequence. This index will be

	used to create different atomic actions for each job
in a sequence

Module:
rally.plugins.openstack.scenarios.sahara.jobs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/jobs.py]

SaharaJob.create_launch_job_sequence [Scenario]

Create and execute a sequence of the Sahara EDP Jobs.

This scenario Creates a Job entity and launches an execution on a
Cluster for every job object provided.

Namespace: default

Parameters:

	jobs: list of jobs that should be executed in one context

Module:
rally.plugins.openstack.scenarios.sahara.jobs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/jobs.py]

SaharaJob.create_launch_job_sequence_with_scaling [Scenario]

Create and execute Sahara EDP Jobs on a scaling Cluster.

This scenario Creates a Job entity and launches an execution on a
Cluster for every job object provided. The Cluster is scaled according
to the deltas values and the sequence is launched again.

Namespace: default

Parameters:

	jobs: list of jobs that should be executed in one context

	
	deltas: list of integers which will be used to add or

	remove worker nodes from the cluster

Module:
rally.plugins.openstack.scenarios.sahara.jobs [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/jobs.py]

SaharaNodeGroupTemplates.create_and_list_node_group_templates [Scenario]

Create and list Sahara Node Group Templates.

This scenario creates two Node Group Templates with different set of
node processes. The master Node Group Template contains Hadoop's
management processes. The worker Node Group Template contains
Hadoop's worker processes.

By default the templates are created for the vanilla Hadoop
provisioning plugin using the version 1.2.1

After the templates are created the list operation is called.

Namespace: default

Parameters:

	
	flavor: Nova flavor that will be for nodes in the

	created node groups

	plugin_name: name of a provisioning plugin

	
	hadoop_version: version of Hadoop distribution supported by

	the specified plugin.

	
	use_autoconfig: If True, instances of the node group will be

	automatically configured during cluster
creation. If False, the configuration values
should be specify manually

Module:
rally.plugins.openstack.scenarios.sahara.node_group_templates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/node_group_templates.py]

SaharaNodeGroupTemplates.create_delete_node_group_templates [Scenario]

Create and delete Sahara Node Group Templates.

This scenario creates and deletes two most common types of
Node Group Templates.

By default the templates are created for the vanilla Hadoop
provisioning plugin using the version 1.2.1

Namespace: default

Parameters:

	
	flavor: Nova flavor that will be for nodes in the

	created node groups

	plugin_name: name of a provisioning plugin

	
	hadoop_version: version of Hadoop distribution supported by

	the specified plugin.

	
	use_autoconfig: If True, instances of the node group will be

	automatically configured during cluster
creation. If False, the configuration values
should be specify manually

Module:
rally.plugins.openstack.scenarios.sahara.node_group_templates [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/sahara/node_group_templates.py]

SenlinClusters.create_and_delete_cluster [Scenario]

Create a cluster and then delete it.

Measure the "senlin cluster-create" and "senlin cluster-delete"
commands performance.

Namespace: default

Parameters:

	
	desired_capacity: The capacity or initial number of nodes

	owned by the cluster

	min_size: The minimum number of nodes owned by the cluster

	
	max_size: The maximum number of nodes owned by the cluster.

	-1 means no limit

	timeout: The timeout value in seconds for cluster creation

	metadata: A set of key value pairs to associate with the cluster

Module:
rally.plugins.openstack.scenarios.senlin.clusters [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/senlin/clusters.py]

SwiftObjects.create_container_and_object_then_delete_all [Scenario]

Create container and objects then delete everything created.

Namespace: default

Parameters:

	objects_per_container: int, number of objects to upload

	object_size: int, temporary local object size

	kwargs: dict, optional parameters to create container

Module:
rally.plugins.openstack.scenarios.swift.objects [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/swift/objects.py]

SwiftObjects.create_container_and_object_then_download_object [Scenario]

Create container and objects then download all objects.

Namespace: default

Parameters:

	objects_per_container: int, number of objects to upload

	object_size: int, temporary local object size

	kwargs: dict, optional parameters to create container

Module:
rally.plugins.openstack.scenarios.swift.objects [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/swift/objects.py]

SwiftObjects.create_container_and_object_then_list_objects [Scenario]

Create container and objects then list all objects.

Namespace: default

Parameters:

	objects_per_container: int, number of objects to upload

	object_size: int, temporary local object size

	kwargs: dict, optional parameters to create container

Module:
rally.plugins.openstack.scenarios.swift.objects [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/swift/objects.py]

SwiftObjects.list_and_download_objects_in_containers [Scenario]

List and download objects in all containers.

Namespace: default

Module:
rally.plugins.openstack.scenarios.swift.objects [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/swift/objects.py]

SwiftObjects.list_objects_in_containers [Scenario]

List objects in all containers.

Namespace: default

Module:
rally.plugins.openstack.scenarios.swift.objects [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/swift/objects.py]

VMTasks.boot_runcommand_delete [Scenario]

Boot a server, run script specified in command and delete server.

Namespace: default

Parameters:

	image: glance image name to use for the vm

	flavor: VM flavor name

	username: ssh username on server, str

	password: Password on SSH authentication

	
	command: Command-specifying dictionary that either specifies

	remote command path via remote_path' (can be uploaded from a
local file specified by `local_path), an inline script via
`script_inline' or a local script file path using `script_file'.
Both `script_file' and `local_path' are checked to be accessible
by the `file_exists' validator code.

The `script_inline' and `script_file' both require an `interpreter'
value to specify the interpreter script should be run with.

Note that any of `interpreter' and `remote_path' can be an array
prefixed with environment variables and suffixed with args for
the `interpreter' command. `remote_path's last component must be
a path to a command to execute (also upload destination if a
`local_path' is given). Uploading an interpreter is possible
but requires that `remote_path' and `interpreter' path do match.

Examples:

Run a `local_script.pl' file sending it to a remote
Perl interpreter
command = {
 "script_file": "local_script.pl",
 "interpreter": "/usr/bin/perl"
}

Run an inline script sending it to a remote interpreter
command = {
 "script_inline": "echo 'Hello, World!'",
 "interpreter": "/bin/sh"
}

Run a remote command
command = {
 "remote_path": "/bin/false"
}

Copy a local command and run it
command = {
 "remote_path": "/usr/local/bin/fio",
 "local_path": "/home/foobar/myfiodir/bin/fio"
}

Copy a local command and run it with environment variable
command = {
 "remote_path": ["HOME=/root", "/usr/local/bin/fio"],
 "local_path": "/home/foobar/myfiodir/bin/fio"
}

Run an inline script sending it to a remote interpreter
command = {
 "script_inline": "echo "Hello, ${NAME:-World}"",
 "interpreter": ["NAME=Earth", "/bin/sh"]
}

Run an inline script sending it to an uploaded remote
interpreter
command = {
 "script_inline": "echo "Hello, ${NAME:-World}"",
 "interpreter": ["NAME=Earth", "/tmp/sh"],
 "remote_path": "/tmp/sh",
 "local_path": "/home/user/work/cve/sh-1.0/bin/sh"
}

	volume_args: volume args for booting server from volume

	floating_network: external network name, for floating ip

	port: ssh port for SSH connection

	use_floating_ip: bool, floating or fixed IP for SSH connection

	force_delete: whether to use force_delete for servers

	wait_for_ping: whether to check connectivity on server creation

	**kwargs: extra arguments for booting the server

	
	max_log_length: The number of tail nova console-log lines user

	would like to retrieve

Returns:
dictionary with keys `data' and `errors':
data: dict, JSON output from the script
errors: str, raw data from the script's stderr stream

Module:
rally.plugins.openstack.scenarios.vm.vmtasks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/vm/vmtasks.py]

VMTasks.boot_runcommand_delete_custom_image [Scenario]

Boot a server from a custom image, run a command that outputs JSON.

Example Script in rally-jobs/extra/install_benchmark.sh

Namespace: default

Module:
rally.plugins.openstack.scenarios.vm.vmtasks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/vm/vmtasks.py]

VMTasks.runcommand_heat [Scenario]

Run workload on stack deployed by heat.

Workload can be either file or resource:

Also it should contain "username" key.

Given file will be uploaded to gate_node and started. This script
should print key value pairs separated by colon. These pairs will
be presented in results.

Gate node should be accessible via ssh with keypair key_name, so
heat template should accept parameter key_name.

Namespace: default

Parameters:

	workload: workload to run

	template: path to heat template file

	files: additional template files

	parameters: parameters for heat template

Module:
rally.plugins.openstack.scenarios.vm.vmtasks [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/vm/vmtasks.py]

Watcher.create_audit_and_delete [Scenario]

Create and delete audit.

Create Audit, wait until whether Audit is in SUCCEEDED state or in
FAILED and delete audit.

Namespace: default

Module:
rally.plugins.openstack.scenarios.watcher.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/watcher/basic.py]

Watcher.create_audit_template_and_delete [Scenario]

Create audit template and delete it.

Namespace: default

Parameters:

	goal: The goal audit template is based on

	strategy: The strategy used to provide resource optimization

algorithm

Module:
rally.plugins.openstack.scenarios.watcher.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/watcher/basic.py]

Watcher.list_audit_templates [Scenario]

List existing audit templates.

Audit templates are being created by Audit Template Context.

Namespace: default

Parameters:

	name: Name of the audit template

	goal: Name of the goal

	strategy: Name of the strategy

	
	limit: The maximum number of results to return per

	
request, if:

	limit > 0, the maximum number of audit templates to return.

	limit == 0, return the entire list of audit_templates.

	limit param is NOT specified (None), the number of items
returned respect the maximum imposed by the Watcher API
(see Watcher's api.max_limit option).

	sort_key: Optional, field used for sorting.

	
	sort_dir: Optional, direction of sorting, either 'asc' (the

	default) or 'desc'.

	
	detail: Optional, boolean whether to return detailed information

	about audit_templates.

Module:
rally.plugins.openstack.scenarios.watcher.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/watcher/basic.py]

ZaqarBasic.create_queue [Scenario]

Create a Zaqar queue with a random name.

Namespace: default

Parameters:

	
	kwargs: other optional parameters to create queues like

	"metadata"

Module:
rally.plugins.openstack.scenarios.zaqar.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/zaqar/basic.py]

ZaqarBasic.producer_consumer [Scenario]

Serial message producer/consumer.

Creates a Zaqar queue with random name, sends a set of messages
and then retrieves an iterator containing those.

Namespace: default

Parameters:

	min_msg_count: min number of messages to be posted

	max_msg_count: max number of messages to be posted

	
	kwargs: other optional parameters to create queues like

	"metadata"

Module:
rally.plugins.openstack.scenarios.zaqar.basic [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/scenarios/zaqar/basic.py]

Scenario Runners

constant [Scenario Runner]

Creates constant load executing a scenario a specified number of times.

This runner will place a constant load on the cloud under test by
executing each scenario iteration without pausing between iterations
up to the number of times specified in the scenario config.

The concurrency parameter of the scenario config controls the
number of concurrent scenarios which execute during a single
iteration in order to simulate the activities of multiple users
placing load on the cloud under test.

Namespace: default

Module:
rally.plugins.common.runners.constant [https://github.com/openstack/rally/blob/master/rally/plugins/common/runners/constant.py]

constant_for_duration [Scenario Runner]

Creates constant load executing a scenario for an interval of time.

This runner will place a constant load on the cloud under test by
executing each scenario iteration without pausing between iterations
until a specified interval of time has elapsed.

The concurrency parameter of the scenario config controls the
number of concurrent scenarios which execute during a single
iteration in order to simulate the activities of multiple users
placing load on the cloud under test.

Namespace: default

Module:
rally.plugins.common.runners.constant [https://github.com/openstack/rally/blob/master/rally/plugins/common/runners/constant.py]

rps [Scenario Runner]

Scenario runner that does the job with specified frequency.

Every single benchmark scenario iteration is executed with specified
frequency (runs per second) in a pool of processes. The scenario will be
launched for a fixed number of times in total (specified in the config).

An example of a rps scenario is booting 1 VM per second. This
execution type is thus very helpful in understanding the maximal load that
a certain cloud can handle.

Namespace: default

Module:
rally.plugins.common.runners.rps [https://github.com/openstack/rally/blob/master/rally/plugins/common/runners/rps.py]

serial [Scenario Runner]

Scenario runner that executes benchmark scenarios serially.

Unlike scenario runners that execute in parallel, the serial scenario
runner executes scenarios one-by-one in the same python interpreter process
as Rally. This allows you to benchmark your scenario without introducing
any concurrent operations as well as interactively debug the scenario
from the same command that you use to start Rally.

Namespace: default

Module:
rally.plugins.common.runners.serial [https://github.com/openstack/rally/blob/master/rally/plugins/common/runners/serial.py]

Triggers

event [Trigger]

Triggers hook on specified event and list of values.

Namespace: default

Module:
rally.plugins.common.trigger.event [https://github.com/openstack/rally/blob/master/rally/plugins/common/trigger/event.py]

periodic [Trigger]

Periodically triggers hook with specified range and step.

Namespace: default

Module:
rally.plugins.common.trigger.periodic [https://github.com/openstack/rally/blob/master/rally/plugins/common/trigger/periodic.py]

Verification Component

Verification Reporters

html [Verification Reporter]

Generates verification report in HTML format.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

html-static [Verification Reporter]

Generates verification report in HTML format with embedded JS/CSS.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

json [Verification Reporter]

Generates verification report in JSON format.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

junit-xml [Verification Reporter]

Generates verification report in JUnit-XML format.

Namespace: default

Module:
rally.plugins.common.verification.reporters [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/reporters.py]

Verifier Contexts

tempest_configuration [Verifier Context]

Context class to create/delete resources needed for Tempest.

Namespace: default

Module:
rally.plugins.openstack.verification.tempest.config [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/verification/tempest/config.py]

testr_verifier [Verifier Context]

Context to transform 'run_args' into CLI arguments for testr.

Namespace: default

Module:
rally.plugins.common.verification.testr [https://github.com/openstack/rally/blob/master/rally/plugins/common/verification/testr.py]

Verifier Managers

tempest [Verifier Manager]

Tempest verifier.

Description:

Quote from official documentation:

This is a set of integration tests to be run against a live OpenStack
cluster. Tempest has batteries of tests for OpenStack API validation,
Scenarios, and other specific tests useful in validating an OpenStack
deployment.

Rally supports features listed below:

	cloning Tempest: repository and version can be specified

	installation: system-wide with checking existence of required
packages or in virtual environment

	configuration: options are discovered via OpenStack API, but you can
override them if you need

	running: pre-creating all required resources(i.e images, tenants,
etc), prepare arguments, launching Tempest, live-progress output

	results: all verifications are stored in db, you can built reports,
compare verification at whatever you want time.

Appeared in Rally 0.8.0 (actually, it appeared long time ago with first
revision of Verification Component, but 0.8.0 is mentioned since it is
first release after Verification Component redesign)

	Running arguments:

	
	concurrency: Number of processes to be used for launching tests. In case of 0 value, number of processes will be equal to number of CPU cores.

	load_list: a list of tests to launch.

	pattern: a regular expression of tests to launch.

	set: Name of predefined sets of tests. Known names: full, smoke, baremetal, clustering, compute, database, data_processing, identity, image, messaging, network, object_storage, orchestration, telemetry, volume, scenario

	skip_list: a list of tests to skip (actually, it is a dict where keys are names of tests, values are reasons).

	xfail_list: a list of tests that are expected to fail (actually, it is a dict where keys are names of tests, values are reasons).

	Installation arguments:

	
	system_wide: Whether or not to use the system-wide environment for verifier instead of a virtual environment. Defaults to False.

	version: Branch, tag or commit ID to checkout before verifier installation. Defaults to master

	source: Path or URL to the repo to clone verifier from. Default to https://git.openstack.org/openstack/tempest

Namespace: openstack

Module:
rally.plugins.openstack.verification.tempest.manager [https://github.com/openstack/rally/blob/master/rally/plugins/openstack/verification/tempest/manager.py]

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally Plugins

Context as a plugin

So what are contexts doing? These plugins will be executed before
scenario iteration starts. For example, a context plugin could create
resources (e.g., download 10 images) that will be used by the
scenarios. All created objects must be put into the self.context
dict, through which they will be available in the scenarios. Let's
create a simple context plugin that adds a flavor to the environment
before the benchmark task starts and deletes it after it finishes.

Creation

Inherit a class for your plugin from the base Context class. Then,
implement the Context API: the setup() method that creates a flavor and the
cleanup() method that deletes it.

from rally.task import context
from rally.common import logging
from rally import consts
from rally import osclients

LOG = logging.getLogger(__name__)

@context.configure(name="create_flavor", order=1000)
class CreateFlavorContext(context.Context):
 """This sample creates a flavor with specified options before task starts
 and deletes it after task completion.

 To create your own context plugin, inherit it from
 rally.task.context.Context
 """

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "additionalProperties": False,
 "properties": {
 "flavor_name": {
 "type": "string",
 },
 "ram": {
 "type": "integer",
 "minimum": 1
 },
 "vcpus": {
 "type": "integer",
 "minimum": 1
 },
 "disk": {
 "type": "integer",
 "minimum": 1
 }
 }
 }

 def setup(self):
 """This method is called before the task starts."""
 try:
 # use rally.osclients to get necessary client instance
 nova = osclients.Clients(self.context["admin"]["credential"]).nova()
 # and than do what you need with this client
 self.context["flavor"] = nova.flavors.create(
 # context settings are stored in self.config
 name=self.config.get("flavor_name", "rally_test_flavor"),
 ram=self.config.get("ram", 1),
 vcpus=self.config.get("vcpus", 1),
 disk=self.config.get("disk", 1)).to_dict()
 LOG.debug("Flavor with id '%s'" % self.context["flavor"]["id"])
 except Exception as e:
 msg = "Can't create flavor: %s" % e.message
 if logging.is_debug():
 LOG.exception(msg)
 else:
 LOG.warning(msg)

 def cleanup(self):
 """This method is called after the task finishes."""
 try:
 nova = osclients.Clients(self.context["admin"]["credential"]).nova()
 nova.flavors.delete(self.context["flavor"]["id"])
 LOG.debug("Flavor '%s' deleted" % self.context["flavor"]["id"])
 except Exception as e:
 msg = "Can't delete flavor: %s" % e.message
 if logging.is_debug():
 LOG.exception(msg)
 else:
 LOG.warning(msg)

Usage

You can refer to your plugin context in the benchmark task configuration
files in the same way as any other contexts:

{
 "Dummy.dummy": [
 {
 "args": {
 "sleep": 0.01
 },
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 1
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 1
 },
 "create_flavor": {
 "ram": 1024
 }
 }
 }
]
}

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally Plugins

Hooks. Hook trigger plugins

Why Hooks?

All Rally workloads repeat their actions as many times as it is configured by
runner. Once run, there is no way to interupt the runner to evaluate any change
or restart event on the stability of the cloud under test.
For example we would like to test how configuration change or cloud component
restart would affect performance and stability.

Task hooks were added to fill this gap and allow to use Rally for reliability
and high availability testing. Generally, hooks allow to perform any
actions on specified iteration or specified time since the workload has been
started.

Also, task html-report provides results of hook execution. They can contain
graphical or textual information with timing and statistics.

Hooks & Triggers Overview

Architecture

Rally uses runners to specify how many times the workload should be executed.
Hooks do not use runners, instead they rely on trigger plugins to specify when
and how many times hook should be called. Therefore hooks are isolated from
workload runners and do not affect them because each hook is executed in
separate thread.

Sample of usage

Hooks can be added to the task configuration. Lets take a look at hook
configuration:

{
 "name": "sys_call",
 "args": "/bin/echo 123",
 "trigger": {
 "name": "event",
 "args": {
 "unit": "iteration",
 "at": [5, 50, 200, 1000]
 }
 }
}

It specifies hook plugin with name "sys_call". "args" field contains string
that will be used by sys_call plugin, but in case of any other hook plugin it
can contain any other Python object, that is assumed to be passed to the hook.
"trigger" field specifies which trigger plugin should be used to run this hook.
"trigger" contains similar fields "name" and "args" which represent trigger
plugin name and arguments for trigger plugin. In this example "event" trigger
is specified and configured to run the hook at 5th, 50th, 200th and 1000th
iterations.

Here is a full task config that contains previous hook configuraiton:

{
 "Dummy.dummy": [
 {
 "args": {
 "sleep": 0.01
 },
 "runner": {
 "type": "constant",
 "times": 1500,
 "concurrency": 1
 },
 "hooks": [
 {
 "name": "sys_call",
 "args": "/bin/echo 123",
 "trigger": {
 "name": "event",
 "args": {
 "unit": "iteration",
 "at": [5, 50, 200, 1000]
 }
 }
 }
]
 }
]
}

Note

In this example, runner is configured to run workload 1500 times. So there
is a limit for iterations and hook will be triggered only if certain
iteration is started by runner. In other words, if trigger specifies
iteration out of runner iterations scope then such trigger will not be
called.

Task report for this example will contain minimal information about hook
execution: duration of each hook call and its status(success of failure).

Let's take a look at more complicated config that can produce graphical
and textual information.

 Dummy.dummy:
 -
 args:
 sleep: 0.75
 runner:
 type: "constant"
 times: 20
 concurrency: 2
 hooks:
 - name: sys_call
 description: Run script
 args: sh rally/rally-jobs/extra/hook_example_script.sh
 trigger:
 name: event
 args:
 unit: iteration
 at: [2, 5, 8, 13, 17]
 - name: sys_call
 description: Show time
 args: date +%Y-%m-%dT%H:%M:%S
 trigger:
 name: event
 args:
 unit: time
 at: [0, 2, 5, 6, 9]
 - name: sys_call
 description: Show system name
 args: uname -a
 trigger:
 name: event
 args:
 unit: iteration
 at: [2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 17, 18]
 sla:
 failure_rate:
 max: 0

hook_example_script.sh generates dummy output in JSON format. Grafical
information format is the same as for workloads and the same types of
charts are supported for the hooks.

Here is a report that shows aggregated table and chart with hook results:

[image: ../../_images/Hook-Aggregated-Report.png]
Here is report that shows lines chart and pie chart for first hook on
the second iteration:

[image: ../../_images/Hook-Per-Hook-Report.png]
Browse existing Hooks and Triggers.

Writing your own Hook plugin

Problem description

Hook plugin should implement custom action that can be done one or multiple
times during the workload. Examples of such actions might be the following:

	Destructive action inside cloud (Fault Injection)

	Getting information about current state of cloud (load/health)

	Upgrading/downgrading a component of cloud

	Changing configuration of cloud

	etc.

Plugin code

The following example shows simple hook code that performs system call.
It is inherited from the base Hook class and contains implemented run()
method:

import shlex
import subprocess

from rally import consts
from rally.task import hook

@hook.configure(name="simple_sys_call")
class SimpleSysCallHook(hook.Hook):
 """Performs system call."""

 CONFIG_SCHEMA = {
 "$schema": consts.JSON_SCHEMA,
 "type": "string",
 }

 def run(self):
 proc = subprocess.Popen(shlex.split(self.config),
 stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)
 proc.wait()
 if proc.returncode:
 self.set_error(
 exception_name="n/a", # no exception class
 description="Subprocess returned {}".format(proc.returncode),
 details=proc.stdout.read(),
)

Any exceptions risen during execution of run method will be caught by Hook
base class and saved as a result. Although hook should manually call
Hook.set_error() to indicate logical error in case if there is no exception
raised.

Also there is a method for saving charts data: Hook.add_output().

Plugin Placement

There are two folders for hook plugins:

	OpenStack Hooks [https://github.com/openstack/rally/tree/master/rally/plugins/openstack/hook]

	Common Hooks [https://github.com/openstack/rally/tree/master/rally/plugins/common/hook]

Sample of task that uses Hook

{
 "Dummy.dummy": [
 {
 "args": {
 "sleep": 0.01
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 1
 },
 "hooks": [
 {
 "name": "simple_sys_call",
 "args": "/bin/echo 123",
 "trigger": {
 "name": "event",
 "args": {
 "unit": "iteration",
 "at": [3, 6]
 }
 }
 }
]
 }
]
}

Results of task execution

Result of previous task example:

[image: ../../_images/Hook-Results.png]

Writing your own Trigger plugin

Problem description

Trigger plugin should implement an event processor that decides whether to
start hook or not. Rally has two basic triggers that should cover most cases:

	Event Trigger

	Periodic Trigger

Plugin code

This example shows the code of the existing Event trigger:

from rally import consts
from rally.task import trigger

@trigger.configure(name="event")
class EventTrigger(trigger.Trigger):
 """Triggers hook on specified event and list of values."""

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "oneOf": [
 {
 "properties": {
 "unit": {"enum": ["time"]},
 "at": {
 "type": "array",
 "minItems": 1,
 "uniqueItems": True,
 "items": {
 "type": "integer",
 "minimum": 0,
 }
 },
 },
 "required": ["unit", "at"],
 "additionalProperties": False,
 },
 {
 "properties": {
 "unit": {"enum": ["iteration"]},
 "at": {
 "type": "array",
 "minItems": 1,
 "uniqueItems": True,
 "items": {
 "type": "integer",
 "minimum": 1,
 }
 },
 },
 "required": ["unit", "at"],
 "additionalProperties": False,
 },
]
 }

 def get_listening_event(self):
 return self.config["unit"]

 def on_event(self, event_type, value=None):
 if not (event_type == self.get_listening_event()
 and value in self.config["at"]):
 # do nothing
 return
 super(EventTrigger, self).on_event(event_type, value)

Trigger plugins must override two methods:

	get_listening_event - this method should return currently configured
event name. (So far Rally supports only "time" and "iteration")

	on_event - this method is called each time certain events occur.
It calls base method when the hook is triggered on specified event.

Plugin Placement

All trigger plugins should be placed in Trigger folder [https://github.com/openstack/rally/tree/master/rally/plugins/common/trigger].

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally Plugins

Scenario runner as a plugin

Let's create a scenario runner plugin that runs a given benchmark
scenario a random number of times (chosen at random from a given
range).

Creation

Inherit a class for your plugin from the base ScenarioRunner class
and implement its API (the _run_scenario() method):

import random

from rally.task import runner
from rally import consts

@runner.configure(name="random_times")
class RandomTimesScenarioRunner(runner.ScenarioRunner):
 """Sample scenario runner plugin.

 Run scenario random number of times, which is chosen between min_times and
 max_times.
 """

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "properties": {
 "type": {
 "type": "string"
 },
 "min_times": {
 "type": "integer",
 "minimum": 1
 },
 "max_times": {
 "type": "integer",
 "minimum": 1
 }
 },
 "additionalProperties": True
 }

 def _run_scenario(self, cls, method_name, context, args):
 # runners settings are stored in self.config
 min_times = self.config.get('min_times', 1)
 max_times = self.config.get('max_times', 1)

 for i in range(random.randrange(min_times, max_times)):
 run_args = (i, cls, method_name,
 runner._get_scenario_context(context), args)
 result = runner._run_scenario_once(run_args)
 # use self.send_result for result of each iteration
 self._send_result(result)

Usage

You can refer to your scenario runner in the benchmark task
configuration files in the same way as any other runners. Don't forget
to put your runner-specific parameters in the configuration as well
("min_times" and "max_times" in our example):

{
 "Dummy.dummy": [
 {
 "runner": {
 "type": "random_times",
 "min_times": 10,
 "max_times": 20,
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 1
 }
 }
 }
]
}

Different plugin samples are available here [https://github.com/openstack/rally/tree/master/samples/plugins].

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally Plugins

Scenario as a plugin

Let's create a simple scenario plugin that list flavors.

Creation

Inherit a class for your plugin from the base Scenario class and
implement a scenario method inside it. In our scenario, we'll first
list flavors as an ordinary user, and then repeat the same using admin
clients:

from rally.task import atomic
from rally.task import scenario

class ScenarioPlugin(scenario.Scenario):
 """Sample plugin which lists flavors."""

 @atomic.action_timer("list_flavors")
 def _list_flavors(self):
 """Sample of usage clients - list flavors

 You can use self.context, self.admin_clients and self.clients which are
 initialized on scenario instance creation"""
 self.clients("nova").flavors.list()

 @atomic.action_timer("list_flavors_as_admin")
 def _list_flavors_as_admin(self):
 """The same with admin clients"""
 self.admin_clients("nova").flavors.list()

 @scenario.configure()
 def list_flavors(self):
 """List flavors."""
 self._list_flavors()
 self._list_flavors_as_admin()

Usage

You can refer to your plugin scenario in the benchmark task
configuration files in the same way as any other scenarios:

{
 "ScenarioPlugin.list_flavors": [
 {
 "runner": {
 "type": "serial",
 "times": 5,
 },
 "context": {
 "create_flavor": {
 "ram": 512,
 }
 }
 }
]
}

This configuration file uses the "create_flavor" context which we
created in Context as a plugin.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Rally Plugins

SLA as a plugin

Let's create an SLA (success criterion) plugin that checks whether the
range of the observed performance measurements does not exceed the
allowed maximum value.

Creation

Inherit a class for your plugin from the base SLA class and implement its API
(the add_iteration(iteration), the details() method):

from rally.task import sla
from rally.common.i18n import _

@sla.configure(name="max_duration_range")
class MaxDurationRange(sla.SLA):
 """Maximum allowed duration range in seconds."""

 CONFIG_SCHEMA = {
 "type": "number",
 "minimum": 0.0,
 }

 def __init__(self, criterion_value):
 super(MaxDurationRange, self).__init__(criterion_value)
 self._min = 0
 self._max = 0

 def add_iteration(self, iteration):
 # Skipping failed iterations (that raised exceptions)
 if iteration.get("error"):
 return self.success # This field is defined in base class

 # Updating _min and _max values
 self._max = max(self._max, iteration["duration"])
 self._min = min(self._min, iteration["duration"])

 # Updating successfulness based on new max and min values
 self.success = self._max - self._min <= self.criterion_value
 return self.success

 def details(self):
 return (_("%s - Maximum allowed duration range: %.2f%% <= %.2f%%") %
 (self.status(), self._max - self._min, self.criterion_value))

Usage

You can refer to your SLA in the benchmark task configuration files in
the same way as any other SLA:

{
 "Dummy.dummy": [
 {
 "args": {
 "sleep": 0.01
 },
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 1
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 1
 }
 },
 "sla": {
 "max_duration_range": 2.5
 }
 }
]
}

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Contribute to Rally

Where to begin

Please take a look our Roadmap [https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0] to get information about our current work
directions.

In case you have questions or want to share your ideas, be sure to contact us
either at Rally-dev/Lobby [https://gitter.im/rally-dev/Lobby] channel on Gitter messenger (or, less
preferably, at the #openstack-rally IRC channel on irc.freenode.net).

If you are going to contribute to Rally, you will probably need to grasp a
better understanding of several main design concepts used throughout our
project (such as benchmark scenarios, contexts etc.). To do so, please
read this article.

How to contribute

1. You need a Launchpad [https://launchpad.net/] account and need to be joined to the
OpenStack team [https://launchpad.net/openstack]. You can also join the Rally team [https://launchpad.net/rally] if you want to. Make
sure Launchpad has your SSH key, Gerrit (the code review system) uses this.

2. Sign the CLA as outlined in the account setup [http://docs.openstack.org/infra/manual/developers.html#development-workflow] section of the developer
guide.

	Tell git your details:

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

4. Install git-review. This tool takes a lot of the pain out of remembering
commands to push code up to Gerrit for review and to pull it back down to edit
it. It is installed using:

pip install git-review

Several Linux distributions (notably Fedora 16 and Ubuntu 12.04) are also
starting to include git-review in their repositories so it can also be
installed using the standard package manager.

	Grab the Rally repository:

git clone git@github.com:openstack/rally.git

	Checkout a new branch to hack on:

git checkout -b TOPIC-BRANCH

	Start coding

8. Run the test suite locally to make sure nothing broke, e.g. (this will run
py34/py27/pep8 tests):

tox

(NOTE: you should have installed tox<=1.6.1)

If you extend Rally with new functionality, make sure you have also provided
unit and/or functional tests for it.

	Commit your work using:

git commit -a

Make sure you have supplied your commit with a neat commit message, containing
a link to the corresponding blueprint / bug, if appropriate.

	Push the commit up for code review using:

git review -R

That is the awesome tool we installed earlier that does a lot of hard work for
you.

11. Watch your email or review site [http://review.openstack.org/], it will automatically send your code
for a battery of tests on our Jenkins setup [http://jenkins.openstack.org/] and the core team for the
project will review your code. If there are any changes that should be made
they will let you know.

	When all is good the review site will automatically merge your code.

(This tutorial is based on:
http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html)

Testing

Please, don't hesitate to write tests ;)

Unit tests

Files: /tests/unit/*

The goal of unit tests is to ensure that internal parts of the code work
properly. All internal methods should be fully covered by unit tests with a
reasonable mocks usage.

About Rally unit tests:

	All unit tests [http://en.wikipedia.org/wiki/Unit_testing] are located inside /tests/unit/*

	Tests are written on top of: testtools and mock libs

	Tox [https://tox.readthedocs.org/en/latest/] is used to run unit tests

To run unit tests locally:

$ pip install tox
$ tox

To run py34, py27 or pep8 only:

$ tox -e <name>

#NOTE: <name> is one of py34, py27 or pep8

To run a single unit test e.g. test_deployment

$ tox -e <name> -- <test_name>

#NOTE: <name> is one of py34, py27 or pep8
<test_name> is the unit test case name, e.g tests.unit.test_osclients

To debug issues on the unit test:

	Add breakpoints on the test file using import pdb; pdb.set_trace()

	Then run tox in debug mode:

$ tox -e debug <test_name>
#NOTE: use python 2.7
#NOTE: <test_name> is the unit test case name

or

$ tox -e debug34 <test_name>
#NOTE: use python 3.4
#NOTE: <test_name> is the unit test case name

To get test coverage:

$ tox -e cover

#NOTE: Results will be in /cover/index.html

To generate docs:

$ tox -e docs

#NOTE: Documentation will be in doc/source/_build/html/index.html

Functional tests

Files: /tests/functional/*

The goal of functional tests [https://en.wikipedia.org/wiki/Functional_testing] is to check that everything works well
together. Functional tests use Rally API only and check responses without
touching internal parts.

To run functional tests locally:

$ source openrc
$ rally deployment create --fromenv --name testing
$ tox -e cli

#NOTE: openrc file with OpenStack admin credentials

Output of every Rally execution will be collected under some reports root in
directory structure like: reports_root/ClassName/MethodName_suffix.extension
This functionality implemented in tests.functional.utils.Rally.__call__ method.
Use 'gen_report_path' method of 'Rally' class to get automatically generated
file path and name if you need. You can use it to publish html reports,
generated during tests. Reports root can be passed throw environment variable
'REPORTS_ROOT'. Default is 'rally-cli-output-files'.

Rally CI scripts

Files: /tests/ci/*

This directory contains scripts and files related to the Rally CI system.

Rally Style Commandments

Files: /tests/hacking/

This module contains Rally specific hacking rules for checking commandments.

For more information about Style Commandments, read the
OpenStack Style Commandments manual [http://docs.openstack.org/developer/hacking/].

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Request New Features

To request a new feature, you should create a document similar to other feature
requests and then contribute it to the doc/feature_request directory of the
Rally repository (see the How-to-contribute tutorial).

If you don't have time to contribute your feature request via Gerrit, please
contact Boris Pavlovic (boris@pavlovic.me)

Active feature requests:

	Capture Logs from services

	Check queue perfdata

	Ability to compare results between task

	Distributed load generation

	Explicitly specify existing users for scenarios

	Historical performance data

	Enhancements to installation script: --version and --uninstall

	Installation script: --pypi-mirror, --package-mirror and --venv-mirror

	Launch Specific Benchmark(s)

	Using multi scenarios to generate load

	Multiple attach volume

	Add support of persistence benchmark environment

	Production read cleanups

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Capture Logs from services

Use case

A developer is executing various task and would like to capture logs as
well as test results.

Problem description

In case of errors it is quite hard to debug what happened.

Possible solution

	Add special context that can capture the logs from tested services.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Check queue perfdata

Use case

Sometimes OpenStack services use common messaging system very prodigally. For
example Neutron metering agent sending all database table data on new object
creation i.e https://review.openstack.org/#/c/143672/. It cause to Neutron
degradation and other obvious problems. It will be nice to have a way to track
messages count and messages size in queue during tests/benchmarks.

Problem description

Heavy usage of queue isn’t checked.

Possible solution

	Before running tests/benchmarks start process which will connect to queue

topics and measure messages count, size and other data which we need.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Ability to compare results between task

Use case

During the work on performance it's essential to be able to compare results of
similar task before and after change in system.

Problem description

There is no command to compare two or more tasks and get tables and graphs.

Possible solution

	Add command that accepts 2 tasks UUID and prints graphs that compares result

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Distributed load generation

Use Case

Some OpenStack projects (Marconi, MagnetoDB) require a real huge load,
like 10-100k request per second for benchmarking.

To generate such huge load Rally have to create load from different
servers.

Problem Description

	Rally can't generate load from different servers

	Result processing can't handle big amount of data

	There is no support for chunking results

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Explicitly specify existing users for scenarios

Use Case

Rally allows to reuse existing users for scenario runs. And we should be able
to use only specified set of existing users for specific scenarios.

Problem Description

For the moment if used deployment with existing users then Rally chooses
user for each scenario run randomly. But there are cases when we may want
to use one scenario with one user and another with different one specific user.
Main reason for it is in different set of resources that each user has and
those resources may be required for scenarios. Without this feature Rally user
is forced to make all existing users similar and have all required resources
set up for all scenarios he uses. But it is redundant.

Possible solution

	Make it possible to use explicitly existing_users context

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Historical performance data

Use case

OpenStack is really rapidly developed. Hundreds of patches are merged daily
and it's really hard to track how performance is changed during time.
It will be nice to have a way to track performance of major functionality
of OpenStack running periodically rally task and building graphs that represent
how performance of specific method is changed during the time.

Problem description

There is no way to bind tasks

Possible solution

	Add grouping for tasks

	Add command that creates historical graphs

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Enhancements to installation script: --version and --uninstall

Use case

User might wish to control which rally version is installed or even purge
rally from the machine completely.

Problem description

	Installation script doesn't allow to choose version.

	No un-install support.

Possible solution

	Add --version option to installation script.

	Add --uninstall option to installation script or create an
un-installation script

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Installation script: --pypi-mirror, --package-mirror and --venv-mirror

Use case

Installation is pretty easy when there is an Internet connection available.
And there is surely a number of OpenStack uses when whole environment is
isolated. In this case, we need somehow specify where installation script
should take required libs and packages.

Problem description

	Installation script can't work without direct Internet connection

Possible solution #1

	Add --pypi-mirror option to installation script.

	Add --package-mirror option to installation script.

	Add --venv-mirror option to installation script.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Launch Specific Benchmark(s)

Use case

A developer is working on a feature that is covered by one or more specific
benchmarks/scenarios. He/she would like to execute a rally task with an
existing task template file (YAML or JSON) indicating exactly which
benchmark(s) will be executed.

Problem description

When executing a task with a template file in Rally, all benchmarks are
executed without the ability to specify one or a set of benchmarks the user
would like to execute.

Possible solution

	Add optional flag to rally task start command to specify one or more

benchmarks to execute as part of that test run.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Using multi scenarios to generate load

Use Case

Rally should be able to generate real life load. Simultaneously create load
on different components of OpenStack, e.g. simultaneously booting VM, uploading
image and listing users.

Problem Description

At the moment Rally is able to run only 1 scenario per benchmark.
Scenario are quite specific (e.g. boot and delete VM for example) and can't
actually generate real life load.

Writing a lot of specific benchmark scenarios that will produce more real life
load will produce mess and a lot of duplication of code.

Possible solution

	Extend Rally task benchmark configuration in such way to support passing
multiple benchmark scenarios in single benchmark context

	Extend Rally task output format to support results of multiple scenarios in
single benchmark separately.

	Extend rally task plot2html and rally task detailed to show results
separately for every scenario.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Multiple attach volume

Use Case

Since multiple volume attaching support to OpenStack Mitaka, one volume can be
attached to several instances or hosts, Rally should add scenarios about
multiple attach volume.

Problem Description

Rally lack of scenarios about multiple attach volume.

Possible solution

	Add nova scenarios "multi_attach_volume" and "multi_detach_volume"

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Add support of persistence benchmark environment

Use Case

To benchmark many of operations like show, list, detailed you need to have
already these resource in cloud. So it will be nice to be able to create
benchmark environment once before benchmarking. So run some amount of
benchmarks that are using it and at the end just delete all created resources
by benchmark environment.

Problem Description

Fortunately Rally has already a mechanism for creating benchmark environment,
that is used to create load. Unfortunately it's atomic operation:
(create environment, make load, delete environment).
This should be split to 3 separated steps.

Possible solution

	Add new CLI operations to work with benchmark environment:
(show, create, delete, list)

	Allow task to start against benchmark environment (instead of deployment)

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Request New Features

Production read cleanups

Use Case

Rally should delete in any case all resources that it created during benchmark.

Problem Description

	(implemented) Deletion rate limit

You can kill cloud by deleting too many objects simultaneously, so deletion
rate limit is required

	(implemented) Retry on failures

There should be few attempts to delete resource in case of failures

	(implemented) Log resources that failed to be deleted

We should log warnings about all non deleted resources. This information
should include UUID of resource, it's type and project.

	(implemented) Pluggable

It should be simple to add new cleanups adding just plugins somewhere.

	Disaster recovery

Rally should use special name patterns, to be able to delete resources
in such case if something went wrong with server that is running Rally. And
you have just new instance (without old Rally DB) of Rally on new server.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

Project Info and Release Notes

Maintainers

Project Team Lead (PTL)

	Contact
	Area of interest

	
Andrey Kurilin

andreykurilin (irc)

andr.kurilin@gmail.com

akurilin@mirantis.com

	
	Road Map

	Release management

	Community management

	Core team management

	Chief Architect

If you would like to refactor whole Rally or have UX/community/other
issues please contact me.

Project Core maintainers

	Contact
	Area of interest

	
Alexander Maretskiy

amaretskiy (irc)

amaretskiy@mirantis.com

	
	Rally reports

	Front-end

	
Boris Pavlovic

boris-42 (irc)

boris@pavlovic.me

	
	Founder and ideological leader

	Architect

	Rally task & benchmark

	
Chris St. Pierre

stpierre (irc)

cstpierr@cisco.com

	
	Rally task & benchmark

	Bash guru ;)

	
Illia Khudoshyn

ikhudoshyn (irc)

ikhudoshyn@mirantis.com

	
	Rally task & benchmark

	
Kun Huang

kun_huang (irc)

gareth.huang@huawei.com

	
	Rally task & benchmark

	
Li Yingjun

liyingjun (irc)

yingjun.li@kylin-cloud.com

	
	Rally task & benchmark

	
Roman Vasilets

rvasilets (irc)

rvasilets@mirantis.com

	
	Rally task & benchmark

	
Sergey Skripnick

redixin (irc)

sskripnick@mirantis.com

	
	Rally CI/CD

	Rally deploy

	Automation of everything

	
Yair Fried

yfried (irc)

yfried@redhat.com

	
	Rally-Tempest integration

	Rally task & benchmark

All cores from this list are reviewing all changes that are proposed to Rally.
To avoid duplication of efforts, please contact them before starting work on
your code.

Plugin Core reviewers

	Contact
	Area of interest

	
Ivan Kolodyazhny

e0ne (irc)

e0ne@e0ne.info

	
	Cinder plugins

	
Nikita Konovalov

NikitaKonovalov (irc)

nkonovalov@mirantis.com

	
	Sahara plugins

	
Oleg Bondarev

obondarev (irc)

obondarev@mirantis.com

	
	Neutron plugins

	
Sergey Kraynev

skraynev (irc)

skraynev@mirantis.com

	
	Heat plugins

	
Yaroslav Lobankov

ylobankov (irc)

ylobankov@mirantis.com

	
	Rally Verification

All cores from this list are responsible for their component plugins.
To avoid duplication of efforts, please contact them before starting working
on your own plugins.

Useful links

	Source code [https://github.com/openstack/rally]

	Rally roadmap [https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0]

	Project space [http://launchpad.net/rally]

	Bugs [https://bugs.launchpad.net/rally]

	Patches on review [https://review.openstack.org/#/q/status:open+rally,n,z]

	
	Meeting logs [http://eavesdrop.openstack.org/meetings/rally/2016/] (server: irc.freenode.net, channel:

	#openstack-meeting)

	IRC logs [http://irclog.perlgeek.de/openstack-rally] (server: irc.freenode.net, channel: #openstack-rally)

	Gitter chat [https://gitter.im/rally-dev/Lobby]

	Trello board [https://trello.com/b/DoD8aeZy/rally]

Where can I discuss and propose changes?

	Our IRC channel: #openstack-rally on irc.freenode.net;

	Weekly Rally team meeting (in IRC): #openstack-meeting on
irc.freenode.net, held on Mondays at 14:00 UTC;

	OpenStack mailing list: openstack-dev@lists.openstack.org (see
subscription and usage instructions [http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev]);

	Rally team on Launchpad [https://launchpad.net/rally]: Answers/Bugs/Blueprints.

Release Notes

	All release notes

	Rally v0.8.1

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

All release notes

	Rally v0.0.1

	Rally v0.0.2

	Rally v0.0.3

	Rally v0.0.4

	Rally v0.1.0

	Rally v0.1.1

	Rally v0.1.2

	Rally v0.2.0

	Rally v0.3.0

	Rally v0.3.1

	Rally v0.3.2

	Rally v0.3.3

	Rally v0.4.0

	Rally v0.5.0

	Rally v0.6.0

	Rally v0.7.0

	Rally v0.8.0

	Rally v0.8.1

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.0.1

Information

	Commits
	1039

	Bug fixes
	0

	Dev cycle
	547 days

	Release date
	26/Jan/2015

Details

Rally is awesome tool for testing verifying and benchmarking OpenStack clouds.

A lot of people started using Rally in their CI/CD so Rally team should provide
more stable product with clear strategy of deprecation and upgrades.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.0.2

Information

	Commits
	100

	Bug fixes
	18

	Dev cycle
	45 days

	Release date
	12/Mar/2015

Details

This release contains new features, new benchmark plugins, bug fixes,
various code and API improvements.

New Features

	rally task start --abort-on-sla-failure

Stopping load before things go wrong.
Load generation will be interrupted if SLA criteria stop passing.

	Rally verify command supports multiple Tempest sources now.

	python34 support

	postgres DB backend support

API changes

	[new] rally [deployment | verify | task] use subcommand

It should be used instead of root command rally use

	[new] Rally as a Lib API

To avoid code duplication between Rally as CLI tool and Rally as a Service
we decide to make Rally as a Lib as a common part between these 2 modes.

Rally as a Service will be a daemon that just maps HTTP request to Rally
as a Lib API.

	[deprecated] rally use CLI command

	[deprecated] Old Rally as a Lib API

Old Rally API was quite mixed up so we decide to deprecate it

Plugins

	Benchmark Scenario Runners:

[improved] Improved algorithm of generation load in constant runner

Before we used processes to generate load, now it creates pool of
processes (amount of processes is equal to CPU count) after that in
each process use threads to generate load. So now you can easily
generate load of 1k concurrent scenarios.

[improved] Unify code of constant and rps runners

[interface] Added abort() to runner's plugin interface

New method abort() is used to immediately interrupt execution.

	Benchmark Scenarios:

[new] DesignateBasic.create_and_delete_server

[new] DesignateBasic.create_and_list_servers

[new] DesignateBasic.list_servers

[new] MistralWorkbooks.list_workbooks

[new] MistralWorkbooks.create_workbook

[new] Quotas.neutron_update

[new] HeatStacks.create_update_delete_stack

[new] HeatStacks.list_stacks_and_resources

[new] HeatStacks.create_suspend_resume_delete_stac

[new] HeatStacks.create_check_delete_stack

[new] NeutronNetworks.create_and_delete_routers

[new] NovaKeypair.create_and_delete_keypair

[new] NovaKeypair.create_and_list_keypairs

[new] NovaKeypair.boot_and_delete_server_with_keypair

[new] NovaServers.boot_server_from_volume_and_live_migrate

[new] NovaServers.boot_server_attach_created_volume_and_live_migrate

[new] CinderVolumes.create_and_upload_volume_to_image

[fix] CinderVolumes.create_and_attach_volume

Pass optional **kwargs only to create server command

[fix] GlanceImages.create_image_and_boot_instances

Pass optional **kwargs only to create server command

[fix] TempestScenario.* removed stress cleanup.

Major issue is that tempest stress cleanup cleans whole OpenStack.
This is very dangerous, so it's better to remove it and leave some
extra resources.

[improved] NovaSecGroup.boot_and_delete_server_with_secgroups

Add optional **kwargs that are passed to boot server comment

	Benchmark Context:

[new] stacks

Generates passed amount of heat stacks for all tenants.

[new] custom_image

Prepares images for benchmarks in VMs.

To Support generating workloads in VMs by existing tools like: IPerf,
Blogbench, HPCC and others we have to have prepared images, with
already installed and configured tools.

Rally team decide to generate such images on fly from passed to avoid
requirements of having big repository with a lot of images.

This context is abstract context that allows to automate next steps:

	runs VM with passed image (with floating ip and other stuff)

	execute abstract method that has access to VM

	snapshot this image

In future we are going to use this as a base for making context that
prepares images.

[improved] allow_ssh

Automatically disable it if security group are disabled in neutron.

[improved] keypair

Key pairs are stored in "users" space it means that accessing keypair
from scenario is simpler now:

self.context["user"]["keypair"]["private"]

[fix] users

Pass proper EndpointType for newly created users

[fix] sahara_edp

The Job Binaries data should be treated as a binary content

	Benchmark SLA:

[interface] SLA calculations is done in additive way now

Resolves scale issues, because now we don't need to have whole
array of iterations in memory to process SLA.

This is required to implement --abort-on-sla-failure feature

[all] SLA plugins were rewritten to implement new interface

Bug fixes

18 bugs were fixed, the most critical are:

	Fix rally task detailed --iterations-data

It didn't work in case of missing atomic actions. Such situation can occur
if scenario method raises exceptions

	Add user-friendly message if the task cannot be deleted

In case of trying to delete task that is not in "finished" status users get
traces instead of user-friendly message try to run it with --force key.

	Network context cleanups networks properly now

Documentation

	Image sizes are fixed

	New tutorial in "Step by Step" relate to --abort-on-sla-failure

	Various fixes

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.0.3

Information

	Commits
	53

	Bug fixes
	14

	Dev cycle
	33 days

	Release date
	14/Apr/2015

Details

This release contains new features, new benchmark plugins, bug fixes,
various code and API improvements.

New Features & API changes

	Add the ability to specify versions for clients in benchmark scenarios

You can call self.clients("glance", "2") and get any client for
specific version.

	Add API for tempest uninstall

$ rally-manage tempest uninstall
removes fully tempest for active deployment

	Add a --uuids-only option to rally task list

$ rally task list --uuids-only # returns list with only task uuids

	Adds endpoint to --fromenv deployment creation

$ rally deployment create --fromenv
recognizes standard OS_ENDPOINT environment variable

	Configure SSL per deployment

Now SSL information is deployment specific not Rally specific and
rally.conf option is deprecated

Like in this sample
https://github.com/openstack/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-L12

Specs

	[spec] Proposal for new task input file format

This spec describes new task input format that will allow us to generate
multi scenario load which is crucial for HA and more real life testing:

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/new_rally_input_task_format.rst

Plugins

	Benchmark Scenario Runners:

	Add a maximum concurrency option to rps runner

To avoid running to heavy load you can set 'concurrency' to configuration
and in case if cloud is not able to process all requests it won't start
more parallel requests then 'concurrency' value.

	Benchmark Scenarios:

[new] CeilometerAlarms.create_alarm_and_get_history

[new] KeystoneBasic.get_entities

[new] EC2Servers.boot_server

[new] KeystoneBasic.create_and_delete_service

[new] MuranoEnvironments.list_environments

[new] MuranoEnvironments.create_and_delete_environment

[new] NovaServers.suspend_and_resume_server

[new] NovaServers.pause_and_unpause_server

[new] NovaServers.boot_and_rebuild_server

[new] KeystoneBasic.create_and_list_services

[new] HeatStacks.list_stacks_and_events

[improved] VMTask.boot_runcommand_delete

restore ability to use fixed IP and floating IP to connect to VM
via ssh

[fix] NovaServers.boot_server_attach_created_volume_and_live_migrate

Kwargs in nova scenario were wrongly passed

	Benchmark SLA:

	[new] aborted_on_sla

This is internal SLA criteria, that is added if task was aborted

	[new] something_went_wrong

This is internal SLA criteria, that is added if something went wrong,
context failed to create or runner raised some exceptions

Bug fixes

14 bugs were fixed, the most critical are:

	Set default task uuid to running task. Before it was set only after
task was fully finished.

	The "rally task results" command showed a disorienting "task not found"
message for a task that is currently running.

	Rally didn't know how to reconnect to OpenStack in case if token
expired.

Documentation

	New tutorial task templates

https://rally.readthedocs.org/en/latest/tutorial/step_5_task_templates.html

	Various fixes

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.0.4

Information

	Commits
	87

	Bug fixes
	21

	Dev cycle
	30 days

	Release date
	14/May/2015

Details

This release contains new features, new benchmark plugins, bug fixes, various code and API improvements.

New Features & API changes

	Rally now can generate load with users that already exist

Now one can use Rally for benchmarking OpenStack clouds that are using LDAP, AD or any other read-only keystone backend where it is not possible to create any users. To do this, one should set up the "users" section of the deployment configuration of the ExistingCloud type. This feature also makes it safer to run Rally against production clouds: when run from an isolated group of users, Rally won’t affect rest of the cloud users if something goes wrong.

	New decorator @osclients.Clients.register can add new OpenStack clients at runtime

It is now possible to add a new OpenStack client dynamically at runtime. The added client will be available from osclients.Clients at the module level and cached. Example:

>>> from rally import osclients
>>> @osclients.Clients.register("supernova")
... def another_nova_client(self):
... from novaclient import client as nova
... return nova.Client("2", auth_token=self.keystone().auth_token,
... **self._get_auth_info(password_key="key"))
...
>>> clients = osclients.Clients.create_from_env()
>>> clients.supernova().services.list()[:2]
[<Service: nova-conductor>, <Service: nova-cert>]

	Assert methods now available for scenarios and contexts

There is now a new FunctionalMixin class that implements basic unittest assert methods. The base.Context and base.Scenario classes inherit from this mixin, so now it is possible to use base.assertX() methods in scenarios and contexts.

	Improved installation script

The installation script has been almost completely rewritten. After this change, it can be run from an unprivileged user, supports different database types, allows to specify a custom python binary, always asks confirmation before doing potentially dangerous actions, automatically install needed software if run as root, and also automatically cleans up the virtualenv and/or the downloaded repository if interrupted.

Specs & Feature requests

	[Spec] Reorder plugins

The spec describes how to split Rally framework and plugins codebase to make it simpler for newbies to understand how Rally code is organized and how it works.

	[Feature request] Specify what benchmarks to execute in task

This feature request proposes to add the ability to specify benchmark(s) to be executed when the user runs the rally task start command. A possible solution would be to add a special flag to the rally task start command.

Plugins

	Benchmark Scenario Runners:

	Add limits for maximum Core usage to constant and rps runners

The new 'max_cpu_usage' parameter can be used to avoid possible 100% usage of all available CPU cores by reducing the number of CPU cores available for processes started by the corresponding runner.

	Benchmark Scenarios:

	[new] KeystoneBasic.create_update_and_delete_tenant

	[new] KeystoneBasic.create_user_update_password

	[new] NovaServers.shelve_and_unshelve_server

	[new] NovaServers.boot_and_associate_floating_ip

	[new] NovaServers.boot_lock_unlock_and_delete

	[new] NovaHypervisors.list_hypervisors

	[new] CeilometerSamples.list_samples

	[new] CeilometerResource.get_resources_on_tenant

	[new] SwiftObjects.create_container_and_object_then_delete_all

	[new] SwiftObjects.create_container_and_object_then_download_object

	[new] SwiftObjects.create_container_and_object_then_list_objects

	[new] MuranoEnvironments.create_and_deploy_environment

	[new] HttpRequests.check_random_request

	[new] HttpRequests.check_request

	[improved] NovaServers live migrate benchmarks

add 'min_sleep' and 'max_sleep' parameters to simulate a pause between VM booting and running live migration

	[improved] NovaServers.boot_and_live_migrate_server

add a usage sample to samples/tasks

	[improved] CinderVolumes benchmarks

support size range to be passed to the 'size' argument as a dictionary
{"min": <minimum_size>, "max": <maximum_size>}

	Benchmark Contexts:

	[new] MuranoPackage

This new context can upload a package to Murano from some specified path.

	[new] CeilometerSampleGenerator

Context that can be used for creating samples and collecting resources for benchmarks in a list.

	Benchmark SLA:

	[new] outliers

This new SLA checks that the number of outliers (calculated from the mean and standard deviation of the iteration durations) does not exceed some maximum value. The SLA is highly configurable: the parameters used for outliers threshold calculation can be set by the user.

Bug fixes

21 bugs were fixed, the most critical are:

	Make it possible to use relative imports for plugins that are outside of rally package.

	Fix heat stacks cleanup by deleting them only 1 time per tenant (get rid of "stack not found" errors in logs).

	Fix the wrong behavior of 'rally task detailed --iterations-data' (it lacked the iteration info before).

	Fix security groups cleanup: a security group called "default", created automatically by Neutron, did not get deleted for each tenant.

Other changes

	Streaming algorithms that scale

This release introduces the common/streaming_algorithms.py module. This module is going to contain implementations of benchmark data processing algorithms that scale: these algorithms do not store exhaustive information about every single benchmark iteration duration processed. For now, the module contains implementations of algorithms for computation of mean & standard deviation.

	Coverage job to check that new patches come with unit tests

Rally now has a coverage job that checks that every patch submitted for review does not decrease the number of lines covered by unit tests (at least too much). This job allows to mark most patches with no unit tests with '-1'.

	Splitting the plugins code (Runners & SLA) into common/openstack plugins

According to the spec "Reorder plugins" (see above), the plugins code for runners and SLA has been moved to the plugins/common/ directory. Only base classes now remain in the benchmark/ directory.

Documentation

	Various fixes

	Remove obsolete .rst files (deploy_engines.rst / server_providers.rst / ...)

	Restructure the docs files to make them easier to navigate through

	Move the chapter on task templates to the 4th step in the tutorial

	Update the information about meetings (new release meeting & time changes)

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.1.0

Information

	Commits
	355

	Bug fixes
	90

	Dev cycle
	132 days

	Release date
	25/September/2015

Details

This release contains new features, new 42 plugins, 90 bug fixes,
various code and API improvements.

New Features & API changes

	Improved installation script

	Add parameters:
	--develop parameter to install rally in editable (develop) mode

	--no-color to switch off output colorizing
useful for automated output parsing and terminals that don't
support colors.

	Puts rally.conf under virtualenv etc/rally/ so you can have several
rally installations in virtualenv

	Many fixes related to access of different file, like: rally.conf,
rally db file in case of sqlite

	Update pip before Rally installation

	Fix reinstallation

	Separated Rally plugins & framework

Now plugins are here:
https://github.com/openstack/rally/tree/master/rally/plugins

Plugins are as well separated common/* for common plugins
that can be use no matter what is tested and OpenStack related
plugins

	New Rally Task framework

	All plugins has the same Plugin base:
rally.common.plugin.pluing.Plugin They have the same mechanisms for:
discovering, providing information based on docstrings, and in future
they will use the same deprecation/rename mechanism.

	Some of files are moved:

	rally/benchmark -> rally/task

This was done to unify naming of rally task command and
actually code that implements it.

	rally/benchmark/sla/base.py -> rally/task/sla.py

	rally/benchmark/context/base.py -> rally/task/context.py

	rally/benchmark/scenarios/base.py -> rally/task/scenario.py

	rally/benchmark/runners/base.py -> rally/task/runner.py

	rally/benchmark/scenarios/utils.py -> rally/task/utils.py

This was done to:

	avoid doing rally.benchmark.scenarios import base as scenario_base

	remove one level of nesting

	simplify framework structure

	Some of classes and methods were renamed

	Plugin configuration:

	context.context() -> context.configure()

	scenario.scenario() -> scenario.configure()

	Introduced runner.configure()

	Introduced sla.configure()

This resolves 3 problems:

	Unifies configuration of different types of plugins

	Simplifies plugin interface

	
	Looks nice with new modules path:

	>>> from rally.task import scenario
>>> @scenario.configure()

	Atomic Actions were changed:

	New rally.task.atomic module

This allow us in future to reuse atomic actions in Context plugins

	Renames:

rally.benchmark.scenarios.base.AtomicAction
-> rally.task.atomic.ActionTimer

rally.benchmark.scenarios.base.atomic_action()
-> rally.task.atomic.action_timer()

	Context plugins decide how to map their data for scenario

Now Context.map_for_scenario method can be override to decide
how to pass context object to each iteration of scenario.

	Samples of NEW vs OLD context, sla, scenario and runner plugins:

	Context

Old
from rally.benchmark.context import base

@base.context(name="users", order=100)
class YourContext(base.Context):

 def setup(self):
 # ...

 def cleanup(self):
 # ...

New
from rally.task import context

@context.configure(name="users", order=100)
class YourContext(context.Context):

 def setup(self):
 # ...

 def cleanup(self):
 # ...

 def map_for_scenario(self):
 # Maps context object to the scenario context object
 # like context["users"] -> context["user"] and so on.

	Scenario

Old Scenario

from rally.benchmark.scenarios import base
from rally.benchmark import validation

class ScenarioPlugin(base.Scenario):

 @base.scenario()
 def some(self):
 self._do_some_action()

 @base.atomic_action_timer("some_timer")
 def _do_some_action(self):
 # ...

New Scenario

from rally.task import atomic
from rally.task import scenario
from rally.task import validation

OpenStack scenario has different base now:
rally.plugins.openstack.scenario.OpenStackScenario
class ScenarioPlugin(scenario.Scenario):

 @scenario.configure()
 def some(self):
 self._do_some_action()

 @atomic.action_timer("some_action")
 def _do_some_action(self):
 # ...

	Runner

Old

from rally.benchmark.runners import base

class SomeRunner(base.ScenarioRunner):

 __execution_type__ = "some_runner"

 def _run_scenario(self, cls, method_name, context, args)
 # Load generation

 def abort(self):
 # Method that aborts load generation

New

from rally.task import runner

@runner.configure(name="some_runner")
class SomeRunner(runner.ScenarioRunner):

 def _run_scenario(self, cls, method_name, context, args)
 # Load generation

 def abort(self):
 # Method that aborts load generation

	SLA

Old

from rally.benchmark import sla

class FailureRate(sla.SLA):
 # ...

New

from rally.task import sla

@sla.configure(name="failure_rate")
class FailureRate(sla.SLA):
 # ...

	Rally Task aborted command

Finally you can gracefully shutdown running task by calling:

rally task abort <task_uuid>

	Rally CLI changes

	[add] rally --plugin-paths specify the list of directories with plugins

	[add] rally task report --junit - generate a JUnit report
This allows users to feed reports to tools such as Jenkins.

	[add] rally task abort - aborts running Rally task
when run with the --soft key, the rally task abort command is
waiting until the currently running subtask is finished, otherwise the
command interrupts subtask immediately after current scenario iterations
are finished.

	[add] rally plugin show prints detailed information about plugin

	[add] rally plugin list prints table with rally plugin names and titles

	[add] rally verify genconfig generates tempest.conf without running it.

	[add] rally verify install install tempest for specified deployment

	[add] rally verify reinstall removes tempest for specified deployment

	[add] rally verify uninstall uninstall tempest of specified deployment

	[fix] rally verify start --no-use --no-use was always turned on

	[remove] rally use now each command has subcommand use

	[remove] rally info

	[remove] rally-manage tempest now it is covered by rally verify

	New Rally task reports

	New code is based on OOP style which is base step to make pluggable Reports

	Reports are now generated for only one iteration over the resulting data
which resolves scalability issues when we are working with large
amount of iterations.

	New Load profiler plot that shows amount of iterations that are working
in parallel

	Failed iterations are shown as a red areas on stacked are graphic.

Non backward compatible changes

	[remove] rally use cli command

	[remove] rally info cli command

	[remove] --uuid parameter from rally deployment <any>

	[remove --deploy-id parameter from:
rally task <any>, rally verify <any>, rally show <any>

Specs & Feature requests

[feature request] Explicitly specify existing users for scenarios

[feature request] Improve install script and add --uninstall and --version

[feature request] Allows specific repos & packages in install-rally.sh

[feature request] Add ability to capture logs from tested services

[feature request] Check RPC queue perfdata

[spec] Refactoring Rally cleanup

[spec] Consistent resource names

Plugins

	Scenarios:

[new] CinderVolumes.create_volume_backup

[new] CinderVolumes.create_and_restore_volume_backup

[new] KeystoneBasic.add_and_remove_user_role

[new] KeystoneBasic.create_and_delete_role

[new] KeystoneBasic.create_add_and_list_user_roles

[new] FuelEnvironments.list_environments

[new] CinderVolumes.modify_volume_metadata

[new] NovaServers.boot_and_delete_multiple_servers

[new] NeutronLoadbalancerV1.create_and_list_pool

[new] ManilaShares.list_shares

[new] CeilometerEvents.create_user_and_get_event

[new] CeilometerEvents.create_user_and_list_event_types

[new] CeilometerEvents.create_user_and_list_events

[new] CeilometerTraits.create_user_and_list_trait_descriptions

[new] CeilometerTraits.create_user_and_list_traits

[new] NeutronLoadbalancerV1.create_and_delete_pools

[new] NeutronLoadbalancerV1.create_and_update_pools

[new] ManilaShares.create_and_delete_share

[new] ManilaShares.create_share_network_and_delete

[new] ManilaShares.create_share_network_and_list

[new] HeatStacks.create_and_delete_stack

[new] ManilaShares.list_share_servers

[new] HeatStacks.create_snapshot_restore_delete_stack

[new] KeystoneBasic.create_and_delete_ec2credential

[new] KeystoneBasic.create_and_list_ec2credentials

[new] HeatStacks.create_stack_and_scale

[new] ManilaShares.create_security_service_and_delete

[new] KeystoneBasic.create_user_set_enabled_and_delete

[new] ManilaShares.attach_security_service_to_share_network

[new] IronicNodes.create_and_delete_node

[new] IronicNodes.create_and_list_node

[new] CinderVolumes.create_and_list_volume_backups

[new] NovaNetworks.create_and_list_networks

[new] NovaNetworks.create_and_delete_network

[new] EC2Servers.list_servers

[new] VMTasks.boot_runcommand_delete_custom_imagea

[new] CinderVolumes.create_and_update_volume

	Contexts:

[new] ManilaQuotas

Add context for setting up Manila quotas:
shares, gigabytes, snapshots, snapshot_gigabytes, share_networks

[new] ManilaShareNetworks

Context for share networks that will be used in case of usage
deployment with existing users. Provided share networks via context
option "share_networks" will be balanced between all share creations
of scenarios.

[new] Lbaas

Context to create LBaaS-v1 resources

[new] ImageCommandCustomizerContext

Allows image customization using side effects of a command execution.
E.g. one can install an application to the image and use these image
for 'boot_runcommand_delete' scenario afterwards.

[new] EC2ServerGenerator

Context that creates servers using EC2 api

[new] ExistingNetwork

This context lets you use existing networks that have already been
created instead of creating new networks with Rally. This is useful
when, for instance, you are using Neutron with a dumb router that is
not capable of creating new networks on the fly.

	SLA:

[remove] max_failure_rate - use failure_rate instead

Bug fixes

90 bugs were fixed, the most critical are:

	Many fixes related that fixes access of rally.conf and DB files

	Incorrect apt-get "-yes" parameter in install_rally.sh script

	Rally bash completion doesn't exist in a virtualenv

	Rally show networks CLI command worked only with nova networks

	RPS runner was not properly generating load

	Check is dhcp_agent_scheduler support or not in network cleanup

	NetworkContext doesn't work with Nova V2.1

	Rally task input file was not able to use jinja2 include directive

	Rally in docker image was not able to

	Rally docker image didn't contain samples

	Do not update the average duration when iteration failed

Documentation

	Add plugin reference page

Rally Plugins Reference page page contains a
full list with

	Add maintainers section on project info page

Rally Maintainers section contains information
about core contributors of OpenStack Rally their responsibilities and
contacts. This will help us to make our community more transparent and open
for newbies.

	Added who is using section in docs

	Many small fixes

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.1.1

Information

	Commits
	32

	Bug fixes
	9

	Dev cycle
	11 days

	Release date
	6/October/2015

Details

This release contains new features, new 6 plugins, 9 bug fixes,
various code and API improvements.

New Features

	Rally verify generates proper tempest.conf file now

Improved script that generates tempest.conf, now it works out of box for
most of the clouds and most of Tempest tests will pass without hacking it.

	Import Tempest results to Rally DB

rally verify import command allows you to import already existing Tempest
results and work with them as regular "rally verify start" results:
generate HTML/CSV reports & compare different runs.

API Changes

Rally CLI changes

	[add] rally verify import imports raw Tempest results to Rally

Specs & Feature requests

There is no new specs and feature requests.

Plugins

	Scenarios:

[new] NeutronNetworks.create_and_list_floating_ips

[new] NeutronNetworks.create_and_delete_floating_ips

[new] MuranoPackages.import_and_list_packages

[new] MuranoPackages.import_and_delete_package

[new] MuranoPackages.import_and_filter_applications

[new] MuranoPackages.package_lifecycle

[improved] NovaKeypair.boot_and_delete_server_with_keypair

New argument server_kwargs, these kwargs are used to boot server.

[fix] NeutronLoadbalancerV1.create_and_delete_vips

Now it works in case of concurrency > 1

	Contexts:

[improved] network

Network context accepts two new arguments:
subnets_per_network and network_create_args.

[fix] network

Fix cleanup if nova-network is used. Networks should be dissociate from
project before deletion

[fix] custom_image

Nova server that is used to create custom image was not deleted if
script that prepares server failed.

Bug fixes

9 bugs were fixed, the most critical are:

	Fix install_rally.sh script

Set 777 access to /var/lib/rally/database file if system-wide method of
installation is used.

	Rally HTML reports Overview table had few mistakes

	Success rate was always 100%

	Percentiles were wrongly calculated

	Missing Ironic, Murano and Workload(vm) options in default config file

	rally verify start failed while getting network_id

	rally verify genconfig hangs forever if Horizon is not available

Documentation

	Fix project maintainers page

Update the information about Rally maintainers

	Document rally --plugin-paths CLI argument

	Code blocks in documentation looks prettier now

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.1.2

Information

	Commits
	208

	Bug fixes
	37

	Dev cycle
	77 days

	Release date
	23/December/2015

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

Warning

Release 0.1.2 is the last release with Python 2.6 support.

Deprecations

	Class rally.common.objects.Endpoint was renamed to Credentials. Old
class is kept for backward compatibility. Please, stop using the old class
in your plugins.

Warning

dict key was changed too in user context from "endpoint" to "credential"

	rally.task.utils: wait_is_ready(), wait_for(), wait_for_delete() deprecated
you should use wait_for_status() instead.

Rally Verify

	Added possibility to run Tempest tests listed in a file(--tests-file argument in verify start)

	Added possibility to upload Tempest subunit stream logs into data base

	Improvements in generating Tempest config file

	Reworked subunit stream parser

	Don't install Tempest when rally verify [gen/show]config

	Rally team tries to simplify usage of each our component.
Now Rally verification has some kind of a context like in Tasks.
Before launching each verification, Rally checks existence of required
resources(networks, images, flavours, etc) in Tempest configuration file and
pre-creates them. Do not worry, all these resources will not be forgotten
and left, Rally will clean them after verification.

Rally Task

	Add --html-static argument to rally task report which allows to
generate HTML reports that doesn't require Internet.

	Rally supports different API versions now via api_versions context:

	Move rally.osclients.Clients to plugin base

Rally OSclients is pluggable now and it is very easy to extend OSClient for
your cloud out of Rally tree.

	Add 'merge' functionality to SLA

All SLA plugins should implement merge() method now.
In future this will be used for distributed load generation.
Where SLA results from different runners will be merged together.

	New optional_action_timer decorator

Allows to make the methods that can be both atomic_action or regular
method. Method changes behavior based on value in extra key "atomic_action"

Rally Certification

	Fix Glance certification arguments

	Add Neutron Quotas only if Neutron service is available

Specs & Feature Requests

	Spec consistent-resource-names:

Resource name is based on Task id now. It is a huge step to persistence
and disaster cleanups.

	Add a spec for distributed load generation:

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/distributed_runner.rst

	Improvements for scenario output format

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/improve_scenario_output_format.rst

	Task and Verify results export command

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/task_and_verification_export.rst

Plugins

	Scenarios:

	[new] NovaServers.boot_and_get_console_output

	[new] NovaServers.boot_and_show_server

	[new] NovaServers.boot_server_attach_created_volume_and_resize

	[new] NovaServers.boot_server_from_volume_and_resize

	[new] NeutronSecurityGroup.create_and_delete_security_groups

	[new] NeutronSecurityGroup.create_and_list_security_groups

	[new] NeutronSecurityGroup.create_and_update_security_groups

	[new] NeutronLoadbalancerV1.create_and_delete_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_list_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_update_healthmonitors

	[new] SwiftObjects.list_and_download_objects_in_containers

	[new] SwiftObjects.list_objects_in_containers

	[new] FuelNodes.add_and_remove_node

	[new] CeilometerMeters.list_matched_meters

	[new] CeilometerResource.list_matched_resources

	[new] CeilometerSamples.list_matched_samples

	[new] CeilometerStats.get_stats

	[new] Authenticate.validate_monasca

	[new] DesignateBasic.create_and_delete_zone

	[new] DesignateBasic.create_and_list_zones

	[new] DesignateBasic.list_recordsets

	[new] DesignateBasic.list_zones

	
	[fix] CinderVolumes.create_nested_snapshots_and_attach_volume

	Remove random nested level which produce different amount of atomic
actions and bad reports.

	Support for Designate V2 api

	A lot of improvements in Sahara scenarios

	Context:

	[new] api_versions

Context allows us to setup client to communicate to specific service.

	[new] swift_objects

Context pre creates swift objects for future usage in scenarios

	[update] sahara_cluster

It supports proxy server which allows to use single floating IP for
whole cluster.

	[fix] cleanup

Fix cleanup of networks remove vip before port.

Bug fixes

37 bugs were fixed, the most critical are:

	Follow symlinks in plugin discovery

	Use sed without -i option for portability (install_rally.sh)

	Fixed race in rally.common.broker

	Fixed incorrect iteration number on "Failures" Tab

	Fixing issue with create_isolated_networks = False

	Fix docker build command

Documentation

Fixed some minor typos and inaccuracies.

Thanks

We would like to thank Andreas Jaeger for ability to provide Python 2.6 support in this release.

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.2.0

Information

	Commits
	48

	Bug fixes
	6*

	Dev cycle
	19 days

	Release date
	1/11/2015

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

Warning

Release 0.2.0 doesn't support python 26

Deprecations

	Option --system-wide-install for rally verify start was deprecated in
favor of --system-wide

	
	rally show commands were deprecated because of 3 reasons:

	
	It blocks us to make Rally generic testing tool

	It complicates work on Rally as a Service

	You can always use standard OpenStack clients to do the same

Rally Verify

	Add "xfail" mechanism for Tempest tests.

This mechanism allows us to list some tests, that are expected to fail,
in a YAML file and these tests will have "xfail" status instead of "fail".

Use new argument "--xfails-file" of rally verify start command.

Rally Task

	--out argument of rally task report is optional now

If you don't specify --out <file> it will just print the resulting report

	Better scenario output support

As far as you know each scenario plugin are able to return data as a dict.
This dict contained set of key-values {<name>: <float>} where each name
was line on graph and each number was one of point. Each scenario run adds
a single point for each line on that graph.

This allows to add extra data to the Rally and see how some values were
changed over time. However, in case when Rally was used to execute some other
tool and collect it's data this was useless.

To address this Scenario.add_output(additive, complete) was introduced:

Now it is possible to generate as many as you need graphs by calling this
method multiple times.
There are two types of graph additive and complete. Additive is the same
as legacy concept of output data which is generated from results of all
iterations, complete are used when you would like to return whole chart
from each iteration.

HTML report has proper sub-tabs Aggregated and Per iteration
inside Scenario Data tab.

Here is a simple example how output can be added in any
scenario plugin:

This represents a single X point in result StackedArea.
Values from other X points are taken from other iterations.
self.add_output(additive={"title": "How do A and B changes",
 "description": ("Trend for A and B "
 "during the scenario run"),
 "chart_plugin": "StackedArea",
 "data": [["foo", 42], ["bar", 24]]})
This is a complete Pie chart that belongs to this concrete iteration
self.add_output(
 complete={"title": "",
 "description": ("Complete results for Foo and Bar "
 "from this iteration"),
 "chart_plugin": "Pie",
 "data": [["foo", 42], ["bar", 24]]})

Rally Certification

None.

Specs & Feature Requests

[Spec][Implemented] improve_scenario_output_format

https://github.com/openstack/rally/blob/master/doc/specs/implemented/improve_scenario_output_format.rst

Plugins

	Scenarios:

	[new] DesignateBasic.create_and_update_domain

	[improved] CinderVolumes.create_and_attach_volume

Warning

Use "create_vm_params" dict argument instead of **kwargs for instance parameters.

	Context:

	[improved] images

Warning

The min_ram and min_disk arguments in favor of image_args,
which lets the user specify any image creation keyword arguments they want.

Bug fixes

6 bugs were fixed:

	#1522935: CinderVolumes.create_and_attach_volume does not accept additional
args for create_volume

	#1530770: "rally verify" fails with error 'TempestResourcesContext' object
has no attribute 'generate_random_name'

	#1530075: cirros_img_url in rally.conf doesn't take effective in
verification tempest

	#1517839: Make CONF.set_override with parameter enforce_type=True by default

	#1489059: "db type could not be determined" running py34

	#1262123: Horizon is unreachable outside VM when we are using DevStack +
OpenStack

Documentation

None.

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.3.0

Information

	Commits
	69

	Bug fixes
	7

	Dev cycle
	29 days

	Release date
	2/16/2016

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

Warning

In this release Rally DB schema migration is introduced. While
upgrading Rally from previous versions it is required now to run
rally-manade db upgrade. Please see 'Documentation' section for details.

CLI changes

	
Warning

[Removed] rally info in favor of rally plugin *.

It was deprecated for a long time.

	[Modified] rally deployment check now prints services, which don't have
names, since such services can be used via api_versions context.

	
Warning

[Modified] rally verify [re]install
option --no-tempest-venv was deprecated in favor of --system-wide

	[Added] rally-manage db revision displays current revision of
Rally database schema

	[Added] rally-manage db upgrade upgrades pre-existing Rally
database schema to the latest revision

	[Added] rally-manage db downgrade to downgrades existing Rally
database schema to previous revision

	[Added] rally task export exports task results to external
services (only CLI command introduced, no real service support
implemented yet, however one could write own plugins)

	[Added] rally verify export exports verification results to
external services (only CLI command introduced, no real service support
implemented yet, however one could write own plugins)

Rally Deployment

	
Warning

fuel deployment engine is removed since it was outdated and
lacked both usage and support

Rally Task

Add custom labels for "Scenario Output" charts

	X-axis label can be specified to add_output() by
"axis_label" key of chart options dict.
The key is named "axis_label" but not "x_label"
because chart can be displayed as table, so we explicitly
mention "axis" in option name to make this parameter
useless for tables

	Y-axis label can be specified to add_output() by
"label" key of chart options dict
In some cases this parameter can be used for rendering
tables - it becomes column name in case if chart with
single iteration is transformed into table

	As mentioned above, if we have output chart
with single iteration, then it is transformed to table,
because chart with single value is useless

	OutputLinesChart is added, it is displayed by
NVD3 lineChart()

	Chart "description" is optional now. Description is
not shown if it is not specified explicitly

	Scenario Dummy.add_output is improved to display labels
and OutputLinesChart

	Fix: If Y-values are too long and overlaps chart box,
then JavaScript updates chart width in runtime to fit
width of chart graphs + Y values to their DOM container

Rally Certification

None.

Specs & Feature Requests

	[Spec][Introduced] Export task and verification results to external services

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/task_and_verification_export.rst

	[Spec][Implemented] Consistent resource names

https://github.com/openstack/rally/blob/master/doc/specs/implemented/consistent_resource_names.rst

	[Feature request][Implemented] Tempest concurrency

https://github.com/openstack/rally/blob/master/doc/feature_request/implemented/add_possibility_to_specify_concurrency_for_tempest.rst

Plugins

	Scenarios:

	[added] VMTasks.workload_heat

	[added] NovaFlavors.list_flavors

	[updated] Flavors for Master and Worker node groups are now
configured separately for SaharaCluster.* scenarios

	Context:

	
Warning

[deprecated] rally.plugins.openstack.context.cleanup
in favor of rally.plugins.openstack.cleanup

	[improved] sahara_cluster

Flavors for Master and Worker node groups are now
configured separately in sahara_cluster context

Miscellaneous

	Cinder version 2 is used by default

	Keystone API v3 compatibility improved
	Auth URL in both formats http://foo.rally:5000/v3
and http://foo.rally:5000 is supported for Keystone API v3

	Tempest configuration file is created properly according
to Keystone API version used

	install_rally.sh --branch now accepts all git tree-ish,
not just branches or tags

	VM console logs are now printed when Rally fails to connect to VM

	Add support for Rally database schema migration (see 'Documentation' section)

Bug fixes

7 bugs were fixed:

	#1540563: Rally is incompatible with liberty Neutron client

The root cause is that in Neutron Liberty client,
the _fx function doesn't take any explicit keyword parameter
but Rally is passing one (tenant_id).

	#1543414: The rally verify start command fails when running
a verification against Kilo OpenStack

	#1538341: Error in logic to retrieve image details in image_valid_on_flavor

Documentation

	Add documentation for DB migration

https://github.com/openstack/rally/blob/master/rally/common/db/sqlalchemy/migrations/README.rst

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.3.1

Information

	Commits
	9

	Bug fixes
	6

	Dev cycle
	2 days

	Release date
	2/18/2016

Details

This release is more about bug-fixes than features.

Warning

Please, update 0.3.0 to latest one.

Features

	Pass api_versions info to glance images context

	[Verify] Don't create new flavor when flavor already exists

Bug fixes

6 bugs were fixed, the most critical are:

	#1545889: Existing deployment with given endpoint doesn't work anymore

	#1547092: Insecure doesn't work with Rally 0.3.0

	#1547083: Rally Cleanup failed with api_versions context in 0.3.0 release

	#1544839: Job gate-rally-dsvm-zaqar-zaqar fails since the recent Rally patch

	#1544522: Non-existing "called_once_with" method of Mock library is used

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.3.2

Information

	Commits
	55

	Dev cycle
	25 days

	Release date
	3/14/2016

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

CLI changes

	
Warning

[Modified] Option '--tempest-config' for 'rally verify
reinstall' command was deprecated for removal.

	
Warning

[Removed] Option --system-wide-install was removed from
rally verify commands in favor of --system-wide option.

	
Warning

[Modified] Step of installation of Tempest during execution of
the rally verify start command was deprecated and will be removed in the
future. Please use rally verify install instead.

	Rework commands.task.TaskCommands.detailed. Now output of the command
contains the same results as in HTML report.

Rally Verify

	Re-run failed Tempest tests

Add the ability to re-run the tempest tests that failed in the last test
execution. Sometimes Tempest tests fail due to a special temporary condition
in the environment, in such cases it is very useful to be able to re-execute
those tests.

Running the following command will re-run all the test that failed during
the last test execution regardless of what test suite was run.

rally verify start --failing

Specs & Feature Requests

	[Spec][Introduced] Refactoring scenario utils [https://github.com/openstack/rally/blob/master/doc/specs/in-progress/refactor_scenario_utils.rst]

	[Spec] Deployment unification [https://github.com/openstack/rally/blob/master/doc/specs/in-progress/deployment_type.rst]

Plugins

	Scenarios:

	[updated] Fix flavor for cloudera manager

Cloudera manager need master-node flavor

	[added] Expand Nova API benchmark in Rally

Add support for listing nova hosts, agents, availability-zones
and aggregates.

	[updated] Make sure VolumeGenerator uses the api version info while cleanup

	Designate V2 - Add recordset scenarios

Add create_and_(list|delete)_recordset scenarios
Remove the test also that checks the allowed methods, this is in order for
us to be able to have a private method _walk_pages that will do fetching of
pages for us vs attempting to fetch 1 giant list at once.

	unify *_kwargs name in scenarios

When running a scenario, kwargs is used as default key-word arguments.
But in some scenarios, there are more and one services being called, and
we use xxx_kwargs for this case.

However, some xxx_kwargs are not unified for same usage[0]. Unifying
these could avoid misleading for end users. Another improvement is to
add xxx_kwargs with empty settings for scenario config files.

[0] http://paste.openstack.org/show/489505/

	
Warning

Deprecated arguments 'script' and 'interpreter' were removed
in favor of 'command' argument.

VM task scenarios executes a script with a interpreter provided through a
formatted argument called 'command' which expects the remote_path or
local_path of the script and optionally an interpreter with which the
script has to be executed.

Miscellaneous

	Avoid using len(x) to check if x is empty

This cases are using len() to check if collection has items. As
collections have a boolean representation too, directly check for true /
false. And fix the wrong mock in its unit test.

	Fix install_rally.sh to get it to work on MacOSX

On MacOSX, mktemp requires being passed a template. This change modifies
the calls to mktemp to explicitly pass a template so that the code works
on both MacOSX and linux.

	Use new-style Python classes

There are some classes in the code that didn't inherited from
nothing and this is an old-style classes. A "New Class" is the
recommended way to create a class in modern Python.A "New Class"
should always inherit from object or another new-style class.

Hacking rule added as well.

	Make Rally cope with unversioned keystone URL

With the change, the client version that's returned is now determined by
the keystoneclient library itself based on whether you supply a URL with a
version in it or not.

	Fix rally-mos job to work with mos-8.0

Also remove hardcoded values for some other jobs.

	Add name() to ResourceManager

This will allow us to perform cleanup based on the name.

	Add task_id argument to name_matches_object

This will be used to ensure that we are only deleting resources for a
particular Rally task.

	Extend api.Task.get_detailed

Extend api.Task.get_detailed with ability to return task data as dict with
extended results.

Bug fixes

The most critical fixed bugs are:

	#1547624: Wrong configuration for baremetal(ironic) tempest tests

	#1536800: openrc values are not quoted

The openrc file created after rally deployment --fromenv did not quote the
values for environment variables that will be exported.

	#1509027: Heat delete_stack never exits if status is DELETE_FAILED

	#1540545: Refactored atomic action in authenticate scenario

	#1469897: Incompatible with Keystone v3 argument in service create scenario

	#1550262: Different results in rally task detailed, rally task report
and rally task status commands.

	#1553024: Backward incompatible change in neutronclient(release 4.1.0) broke
Tempest config generation to support latest neutronclient.

Documentation

	Add documentation for DB migration

	Make documentation for output plugins
	Add descriptive docstrings for plugins based on OutputChart

	Register these plugins in Rally Plugins Reference [http://docs.openstack.org/developer/rally/plugin/plugin_reference.html]

	Documentation tox fix

Added information about debugging unit test with tox. Replace 3 references
to py26 with py34 to reflect current rally tox configuration.

	Change structure of rally plugin and plugin references page

	Update the scenario development, runner and context sections

	The design of Rally Plugins Reference [http://docs.openstack.org/developer/rally/plugin/plugin_reference.html] page was improved

	New page was added - CLI references [http://docs.openstack.org/developer/rally/cli/cli_reference.html]

Thanks

To Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.3.3

Information

	Commits
	20

	Dev cycle
	10 days

	Release date
	3/24/2016

Details

A half of patches relate to Cleanup. We have once again proved that ideal
stuff can be improved. :)

Specs & Feature Requests

	[Spec][Introduced] Improve atomic actions format [https://github.com/openstack/rally/blob/master/doc/specs/in-progress/improve_atomic_actions_format.rst]

Plugins

	Cleanups:

	Use proper attribute to get heat stack name

	Always assign a name to created images.

This is necessary for name-based cleanup. If a name is not specified, one
will be generated automatically.

	Improve filtering glance images in case of V2 API

	Delete only images created by images context

Since the images context allows creating images with arbitrary names,
name-based cleanup won't work for it, so we have to delete the exact list
of images that it created instead.

	New config option to set cleanup threads

Allow the user to change the number of cleanup threads via the rally
config. When scaling out to thousands of instances, the cleanup can take
forever with the static 20 threads.

	Add inexact matching to name_matches_object

This will support places where we create resources with names that start
with a given name pattern, but include some additional identifier
afterwards. For instance, when bulk creating instances, Nova appends a UUID
to each instance name.

	Scenarios:

	Add sample of template for testing for testing heat caching.

	Introduced new scenario Dummy.dummy_random_action [http://rally.readthedocs.org/en/latest/plugin/plugin_reference.html#dummy-dummy-random-action-scenario]. It is suitable for
demonstration of upcoming trends report.

	Contexts:

api_versions [http://rally.readthedocs.org/en/latest/plugin/plugin_reference.html#api-versions-context] context was extended to support switch between Keystone V2
and V3 API versions. Now it is possible to use one Rally deployment to check
both Keystone APIs.

	Newcomer in the family:

All ResourceType classes are pluggable now and it is much easier to use and
extend them.

Warning

Decorator rally.task.types.set is deprecated now in favor of
rally.task.types.convert.

Bug fixes

	#1536172: rally deployment destroy failed with traceback for failed
deployments. At current moment it is impossible to delete deployment if for
some reason deployment engine plugin cannot be found, because exception will
be thrown.

Documentation

	Remove extra link in All release notes

Previously, two links for latest release were presented.

	Update release notes for 0.3.2

	Fixed indents for warning messages

	Fixed all references

Thanks

To Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.4.0

Information

	Commits
	76

	Bug fixes
	12

	Dev cycle
	28 days

	Release date
	4/18/2016

Details

Warning

Rally DB schema was changed since previous release.
See HOWTO [http://rally.readthedocs.org/en/latest/db_migrations.html]
about updating your database.

CLI changes

	Add status messages of db migration process

	Display task errors in human-friendly form

	Support OS_PROJECT_NAME as well as OS_TENANT_NAME

Messages

	Removed deprecation warning in case of transmitted "name" attribute while
creation neutron resources.

Warning

Deprecated code was deleted.

	Suppress warning insecure URL messages

Do not spam end users by insecure URL messages because it is
quite valid case in testing process

Database

While preparing for deployment refactoring:

	db schema was changed;

	migration with new column credentials to deployment model was added;

	columns users and admin were dropped.

Rally Task

	Remove deprecated scenario output mechanism via returing value

Warning

Deprecated code was deleted.

	Friendlier error message with empty task file

This is particularly useful when a Jinja2 template results in an empty
task. The current error message isn't very helpful:

Task config is invalid: 'NoneType' object has no attribute 'get'

	Add Heat template validator

Plugins

Scenarios:

	Extend VM bind actions with "pause_unpause", "suspend_resume", "lock_unlock",
"shelve_unshelve".

	Add exact error message into VMTasks.runcommand_heat scenario [http://rally.readthedocs.org/en/0.4.0/plugin/plugin_reference.html#vmtasks-runcommand-heat-scenario]

	Add heat scenarios: output-show, output-list

	Current patch contains 4 scenarios from heat repo:

	
	output-show for old algorithm [http://rally.readthedocs.org/en/0.4.0/plugin/plugin_reference.html#heatstacks-create-stack-and-list-output-via-api-scenario]

	output-show for new algorithm [http://rally.readthedocs.org/en/0.4.0/plugin/plugin_reference.html#heatstacks-create-stack-and-show-output-scenario]

	output-list for old algorithm [http://rally.readthedocs.org/en/0.4.0/plugin/plugin_reference.html#heatstacks-create-stack-and-list-output-via-api-scenario]

	output-list for new algorithm [http://rally.readthedocs.org/en/0.4.0/plugin/plugin_reference.html#heatstacks-create-stack-and-list-output-scenario]

Contexts:

	Reduce default speed of users creation in users context from 30 to 20
by default.

SLAs:

	NEW!! MaxAverageDurationPerAtomic : Maximum average duration of one
iterations atomic actions in seconds.

Plugin Reference [http://rally.readthedocs.org/en/0.4.0/plugin/plugin_reference.html#max-avg-duration-per-atomic-sla]

Reports:

	Improve results calculation in charts.Table

	Use int instead of float for Y axis. It's number of parallel iterations and
it can't be float.

	Remove accuracy that makes no sense, and creates a lot of noise on this graph

	Include failed iterations as well, otherwise we will calculate load
incorrectly

	Graph should start from 0 (begging of experiment)

	Add 2 points at the end of graph to get at the end of graph 0 iterations
in parallel

Task Exporter:

In previous release we introduced new mechanism to export results in various
external systems and various formats.

In this release, we added first plugin for this stuff - file_exporter

Services:

Remove hardcoded timeout from heat service

Utils:

Make glance web uploads streamable

Without this change entire file get's downloaded into memory and can cause
issues.

Rally Verify

	Set time precision to 3 digits (instead of 5) after dot.

	Don't use "--parallel" flag when concurrency == 1

If concurrency equals to 1, it means that we use only one thread to run
Tempest tests and the "--parallel" flag is not needed.

Plugin for DevStack

	Support to be enabled with different plugin name

Allow rally to be installed by devstack through a different plugin
name, e.g:

enable_plugin test-rally http://github.com/rally/rally.git master

	Removed uncalled code

Devstack won't "source plugin.sh source" any more.

Bug fixes

12 bugs were fixed:

	X-Fail mechanism did not work for TestCase which failed on setUp step

If Tempest fails in a test's setUpClass(), there is only one subunit event
for each TestCase. In this case, Rally did not check partial test with x-fail
list and marked test as "fail" insted of "x-fail".

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1568133]

	Weak isolation of scenario arguments between iterations

Input arguments for sub-task were shared between all iterations. Rally team
found one scenario which modified mutable input variable.

Affected scenario: NeutronNetworks.create_and_update_ports

	Incompatible filters between V1 and V2 for Glance images listing

Glance V1 and V2 have different filters. For example, "owner" is a separate
kwarg in V1, not a generic filter. Also, visibility has different labels in
different APIs. We modified our Glance wrapper to support Glance V2 format
of filters for both V1 and V2

	Wrong way to store validation errors

Results of failed task validations saved in incorrect format. It broke and
made un-userfriendly rally task detailed command.

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1562713]

	Hardcoded task's status in rally task results

If there are no results for task, rally task results printed message that
task has failed status, but it can be not true(tasks in running state do not
have results).

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1539096]

	Tempest context failed to create network resources

While we merged improvement for keystoneclient, we used wrong way to obtain
tenant id in TempestContext.

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1550848]

	Tasks based on Tempest failed to parse execution time.

There is an ability in Rally to launch tasks based on Tempest. Since launch
of Tempest is just subprocess, it is needed to parse subunit to set correct
atomic actions.

There was an issue while converting task execution time.

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1566712]

	JSONSchema huge impact on task performance

Before runner sent data to engine we were checking jsonschema. This operation
is very expensive and in some cases it can take a lot of time.

Here are test results, with Dummy.dummy_output scenario, sleep 0.5s
(added manually), 8000 iterations, 400 in parallel:

	
	on master branch before the fix:

	Load duration: 117.659588099
Full duration: 227.451056004

	
	on master before the fix but remove jsonschema validation in scenario:

	Load duration: 12.5437350273
Full duration: 128.942219973

	
	on this patch before the fix (pure python validation):

	Load duration: 11.5991640091
Full duration: 22.7199981213

	Wrong Calculation of running iterations in parallel

Load profile chart was calculated wrongly.
It showed more running iterations in parallel than actually are running.

	Rally did not show "missing argument" error raised by argparse while parsing
cli args

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1562916]

	Issue while checking required arguments in CLI

There was a possible issue in case of several required arguments

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1555764]

	Prepare step of verification did not check visibility of obtained image

When we request a list of images to choose one of them for tests, we should
make sure all images are active and they are PUBLIC. If images are not
public, we will have failures of Tempest tests as described in the bug.

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1564431]

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.5.0

Information

	Commits
	175

	Bug fixes
	19

	Dev cycle
	93 days

	Release date
	7/20/2016

Details

This release took much more time than we expected, but we have a lot of
reasons for such delay and if you look at our change-log, you will understand
them.:)

Here is a quick introduction:

	To make our releases as much as possible stable, we added upper limits for
each of our requirements;

	A lot of deprecated lines of code were removed, so be careful;

	Statistics trends for given tasks were introduced;

	Support for tempest plugins was added;

	Several new pages at docs.

Specs & Feature Requests

	[Introduced && implemented] Introduce class-based scenario implementation [https://github.com/openstack/rally/blob/0.5.0/doc/specs/implemented/class-based-scenarios.rst]

	[Introduced] Rally Task Validation refactoring [https://github.com/openstack/rally/blob/0.5.0/doc/specs/in-progress/pluggable_validators.rst]

	[Introduced] Scaling & Refactoring Rally DB [https://github.com/openstack/rally/blob/0.5.0/doc/specs/in-progress/db_refactoring.rst]

	[Introduced] SLA Performance degradation plugin [https://github.com/openstack/rally/blob/0.5.0/doc/specs/in-progress/sla_pd_plugin.rst]

Logging

	disable urllib3 warnings only if the library provide them

Database

[doesn't require migration]
Transform DB layer to return dicts, not SQLAlchemy models

Rally Deployment

	Support single-AZ deployment

This supports the case where OpenStack is deployed with a single AZ for both
controller(s) and compute(s), and not all hosts in the AZ that contains an
instance are guaranteed to have the nova-compute service.

	Extend creation from environment with several new vars

	OS_ENDPOINT_TYPE/OS_INTERFACE

	OS_USER_DOMAIN_NAME

	OS_PROJECT_DOMAIN_NAME

	Improve devstack plugin for Keystone V3

Rally Task

NEW!! Statistics trends for given tasks.

Rally Verify

	Remove '--tempest-config' arg from 'reinstall' command

Warning

Using --tempest-config is became an error from this release.
Use rally verify genconfig cmd for all config related stuff.

	Don't install Tempest when rally verify start

Warning

Use should use rally verify install cmd to install tempest now

	Add ability to setup version of Tempest to install

CLI argument to setup version [http://rally.readthedocs.io/en/0.5.0/cli/cli_reference.html#verify-install-version]

	Configure 'aodh' service in 'service_available' section

	Check existence of Tempest-tree in rally verify discover cmd

	Make Tempest work with auth url which doesn't include keystone version

Tempest needs /v2.0 and /v3 at the end of URLs. Actually, we can't fix
Tempest, so we extend our configuration module with workaround which allow
to specify auth_url without version in rally deployment config.

	Use default list of plugins for sahara

	Move tempest related options of rally configuration to separate section.

	NEW!! Support for tempest plugins.

CLI argument to install them [http://rally.readthedocs.io/en/0.5.0/cli/cli_reference.html#verify-installplugin]

Plugins

In this release we are happy to introduce new entity - plugins Base classes

We have a lot of base plugin entities: Context, Scenario, SLA and etc.
Sometimes plugins of different bases can have equal names(i.e ceilometer
OSClient and ceilometer Context). It is normal and we should allow such
conflicts. To support such cases we introduced new entity - plugin base.
Statements of plugin bases:

	Each plugin base is unique entity;

	Names of plugin bases can't conflict with each other;

	Names of two or more plugins in one plugin base can't conflict with each
other(in case of same namespace).

	Names of two or more plugins in different plugin base can conflict

	Current list of plugin bases:

	
	rally.task.context.Context

	rally.task.scenario.Scenario

	rally.task.types.ResourceType

	rally.task.exporter.TaskExporter

	rally.task.processing.charts.Chart

	rally.task.runner.ScenarioRunner

	rally.task.sla.SLA

	rally.deployment.serverprovider.provider.ProviderFactory

	rally.deployment.engine.Engine

	rally.osclients.OSClient

OSClients

	NEW!! Support for Senlin client

	NEW!! Support for Gnocchi client

	NEW!! Support for Magnum client

	NEW!! Support for Watcher client

	Transmit endpoint_type to saharaclient

Scenarios:

	NEW!!:

	Authenticate.validate_ceilometer [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#authenticate-validate-ceilometer-scenario]

	CinderVolumes.create_volume_from_snapshot [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#cindervolumes-create-volume-from-snapshot]

	CinderVolumes.create_volume_and_clone [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#cindervolumes-create-volume-and-clone]

	NovaFlavors.create_and_list_flavor_access [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#novaflavors-create-and-list-flavor-access-scenario]

	NovaFlavors.create_flavor [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#novaflavors-create-flavor-scenario]

	NovaServers.boot_and_update_server [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#novaservers-boot-and-update-server]

	NovaServers.boot_server_from_volume_snapshot [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#novaservers-boot-server-from-volume-snapshot]

	[Sahara] Add configs to MapR plugin

	Extend CinderVolumes.create_and_upload_volume_to_image with "image" argument

Plugin Reference [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#cindervolumes-create-and-upload-volume-to-image-scenario]

	Deprecate Dummy.dummy_with_scenario_output scenario in favor of Dummy.dummy_output

Warning

Dummy.dummy_with_scenario_output scenario will be removed after
several releases

Deprecated Plugin Reference [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#dummy-dummy-with-scenario-output-scenario]
New Plugin Reference [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#dummy-dummy-output-scenario]

	Extend CinderVolumes.create_volume_and_clone with nested_level

Add nested_level argument for nested cloning volume to new volume

Plugin Reference [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#cindervolumes-create-volume-and-clone]

	Extend CinderVolumes.create_nested_snapshots_and_attach_volume

Two new arguments were added: create_volume_kwargs and create_snapshot_kwargs

Warning

All arguments related to snapshot creation should be transmitted
only via create_snapshot_kwargs.

Plugin Reference [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#cindervolumes-create-nested-snapshots-and-attach-volume]

	Introduce new style of scenarios - class based.

Spec Reference [https://github.com/openstack/rally/blob/0.5.0/doc/specs/implemented/class-based-scenarios.rst]

	Improve report for VMTasks.boot_runcommand_delete

	[Sahara] Added 5.5.0 version for cdh-plugin and 1.6.0 version for spark

	Extend boot_server_from_volume_and_delete, boot_server_from_volume,
boot_server_from_volume_and_live_migrate, boot_server_from_volume_snapshot
scenarios of NovaServers class with "volume_type" parameter.

Contexts:

	NEW!!:

	Cinder volume_types [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#volume-types-context]

	Murano environments [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#murano-environments-context]

	Heat dataplane [http://rally.readthedocs.io/en/0.5.0/plugin/plugin_reference.html#heat-dataplane-context]

	Use Broker Pattern in Keystone roles context

	Use immutable types for locking context configuration

Since context configuration passed to Context.__init__() was a mutable type
(dict or list), sometimes we had unexpected changes done by unpredictable
code (for example, in wrappers).

	Add possibility to balance usage of users

For the moment all users for tasks were taken randomly and there was no way
to balance them between tasks. It may be very useful when we have difference
between first usage of tenant/user and all consecutive. In this case we get
different load results.

Therefore, "users" context was extended with new config option
'user_choice_method' that defines approach for picking up users.

Two values are available:
- random
- round_robin

Default one is compatible with old approach - "random".

	Make sahara_image and custom_image contexts glance v2 compatible

	Extend servers context with "nics" parameter

	Extend network context with "dns_nameservers" parameter

	Extend volume context with "volume_type" parameter

Cleanup:

	Mark several cleanup resources as tenant_resource

Nova servers and security groups are tenant related resources, but resource
decorator missed that fact which makes cleanup tries to delete one resources
several times.

	Turn off redundant nova servers cleanup for NovaFlavors.list_flavors scenario

	Add neutron cleanup for NeutronSecurityGroup.create_and_delete_security_groups

Exporter:

Rename task-exporter "file-exporter" to "file".

Warning

"file-exporter" is deprecated and will be removed in further
releases.

Types:

Remove deprecated types.

Warning

you should use rally.task.types.convert instead of
rally.task.types.set decorator

Validators

	Add a required_api_version validator

	Add validators for scenario arguments

Utils:

Use glance wrapper where appropriate to support compatibility between V1 and V2

Bug fixes

19 bugs were fixed:

	Wrong arguments order of Keystone wrapper in case of V2 and V3

	AttributeError while disabling urllib3 warnings on old installations

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1573650]

	install_rally.sh script is failed while obtaining setuptools

	"-inf" load duration in case of wrong runner plugin and failed start of
contexts

	Strange input task in the report

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1570328]

	Wrong behaviour of boot_server_from_volume scenarios in case of booting
server from image.

The arg of image must be None, when booting server from volume. Otherwise
still boot server from image.

	Affected scenarios:

	NovaServers.boot_server_from_volume
NovaServers.boot_server_from_volume_and_delete
NovaServers.boot_server_from_volume_and_resize
NovaServers.boot_server_from_volume_and_live_migrate

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1578556]

	Weak validation of json schema of RPS runner

JSON Schema of RPS runner doesn't have "required" field. It means that
users are able to pass wrong configs and we will have runtime error while
running task.

	Rally doesn't take cacert setting while creating keystone session

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1577360]

	Heat scenarios fail when API uses TLS

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1585456]

	Example in comment of context manila_share_networks wrong

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1587164]

	There is no way to get UUID of a verification after it is created by
"rally verify start" or "rally verify import_results" when --no-use is set

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1587034]

	Exposed ssh timeout and interval in vm scenario

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1587728]

	Ceilometer scenario doesn't require "ceilometer" ctx

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1557642]

	"servers" context requires setting network id for multiple possible networks
found.

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1592292]

	nested_level data type incorrect in create_nested_snapshots_and_attach_volume

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1594656]

	Rally cleanup servers raises exception

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1584104]

	Stopping server is redundant before cold-migrating server

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1594730]

	existing_users context doesn't work in case of Keystone v3

	Whether validates flavor's disk or not depends on booting type of the instance

Launchpad bug-report [https://bugs.launchpad.net/rally/+bug/1596756]

Documentation

	Re-use openstack theme for building docs outside rtd.

Rally Docs at docs.openstack.org [http://docs.openstack.org/developer/rally/]

	Add page for Verification component

RTD page [http://rally.readthedocs.io/en/0.5.0/tutorial/step_10_verifying_cloud_via_tempest.html]

	Add glossary page

RTD page [http://rally.readthedocs.io/en/0.5.0/tutorial/glossary.html]

	Adjust docs reference to "KeystoneBasic.authenticate" scenario

RTD page [http://rally.readthedocs.io/en/0.5.0/tutorial/step_6_aborting_load_generation_on_sla_failure.html]

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.6.0

Overview

	Release date
	9/05/2016

Details

Common

	Added Python 3.5 support

	Sync requirements with OpenStack global-requirements

	Start using latest way of authentication - keystoneauth library

	Start porting all scenario plugins to class-based view.

Specs & Feature Requests

	[Implemented] SLA Performance degradation plugin [https://github.com/openstack/rally/blob/0.6.0/doc/specs/implemented/sla_pd_plugin.rst]

	[Proposed] New Tasks Configuration section - hook [https://github.com/openstack/rally/blob/0.6.0/doc/specs/in-progress/hook_section.rst]

Database

	disable db downgrade api

	[require migration] upgrade deployment config

Docker image

	Add sudo rights to rally user
Rally is a pluggable framework. External plugins can require installation of
additional python or system packages, so we decided to add sudo rights.

	Move from ubuntu:14.04 base image to ubuntu:16.04 .
Ubuntu 16.04 is current/latest LTS release. Let's use it.

	pre-install vim
Since there are a lot of users who like to experiment and modify samples
inside container, rally team decided to pre-install vim

	configure/pre-install bash-completion
Rally provides bash-completion script, but it doesn't work without installed
bash-completion package and now it is included in our image.

Rally Deployment

	Add strict jsonschema validation for ExistingCloud deployments. All incorrect
and unexpected properties will not be ignored anymore. If you need to store
some extra parameters, you can use new "extra" property.

	Fix an issue with endpoint_type.
Previously, endpoint type was not transmitted to keystone client. In this
case, keystoneclient used default endpoint type (for different API calls it
can differ). Behaviour after the fix:

	None endpoint type -> Rally will initialize all clients without setting
endpoint type. It means that clients will choose what default values for
endpoint type use by itself. Most of clients have "public" as default
values. Keystone use "admin" or "internal" by default.

	Not none endpoint type -> Rally will initialize all clients with this
endpoint. Be careful, by default most of keystone v2 api calls do not work
with public endpoint type.

Rally Task

	[core] Iterations numbers in logging and reports must be synchronized. Now
they start from 1 .

	[config] users_context.keystone_default_role is a new config option
(Defaults to "member") for setting default user role for new users in case
of Keystone V3.

	[Reports] Embed Rally version into HTML reports
This adds Rally version via meta tag into HTML reports:

<meta name="generator" content="Rally version {{ version }}">

	[Reports] Expand menu if there is only one menu group

	[logging] Remove deprecated rally.common.log module

	[Trends][Reports] Add success rate chart to trends report

	[Reports] Hide menu list if there is no data at all

Rally Verify

	Updating Tempest config file

	Some tests (for boto, horizon, etc.) were removed from Tempest and now there
is no need to keep the corresponding options in Tempest config file.

	Some options in Tempest were moved from one section to another and we should
to do the corresponding changes in Rally to be up to date with the latest
Tempest version.

	Adding '--skip-list' arg to rally verify start cmd

CLI argument for --skip-list [http://rally.readthedocs.io/en/0.6.0/cli/cli_reference.html#verify-start-skiplist]

	NEW!!:

	Command for plugin listing [http://rally.readthedocs.io/en/0.6.0/cli/cli_reference.html#rally-verify-listplugins]

	Command to uninstall plugins [http://rally.readthedocs.io/en/0.6.0/cli/cli_reference.html#rally-verify-uninstallplugin]

	Rename and deprecated several arguments for rally verify start cmd:

	tests-file -> load-list

	xfails-file -> xfail-list

Plugins

Scenarios:

	Extend Sahara scenarios with autoconfig param

Affected plugins:

	SaharaClusters.create_and_delete_cluster [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#saharaclusters-create-and-delete-cluster-scenario]

	SaharaClusters.create_scale_delete_cluster [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#saharaclusters-create-scale-delete-cluster-scenario]

	SaharaNodeGroupTemplates.create_and_list_node_group_templates [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#saharanodegrouptemplates-create-and-list-node-group-templates-scenario]

	SaharaNodeGroupTemplates.create_delete_node_group_templates [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#saharanodegrouptemplates-create-delete-node-group-templates-scenario]

	NEW!!:

	MonascaMetrics.list_metrics [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#monascametrics-list-metrics-scenario]

	SenlinClusters.create_and_delete_cluster [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#senlinclusters-create-and-delete-cluster-scenario]

	Watcher.create_audit_template_and_delete [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#watcher-create-audit-template-and-delete-scenario]

	Watcher.create_audit_and_delete [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#watcher-create-audit-and-delete-scenario]

	Watcher.list_audit_templates [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#watcher-list-audit-templates-scenario]

	Rename murano.create_service to murano.create_services atomic action

SLA:

NEW!!: performance degradation plugin [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#performance-degradation-sla]

Contexts:

	NEW!!:

	Monasca monasca_metrics [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#monasca-metrics-context]

	Senlin profiles [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#profiles-context]

	Watcher audit_templates [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#audit-templates-context]

	Extend manila_share_networks [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#manila-share-networks-context]
context with share-network autocreation support.

	Extend volumes [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#volumes-context]
context to allow volume_type to be None to allow using default value

Bug fixes

	[existing users] Quota context does not restore original settings on exit

Launchpad bug-report #1595578 [https://bugs.launchpad.net/rally/+bug/1595578]

	[keystone v3] Rally task's test user role setting failed

Launchpad bug-report #1595081 [https://bugs.launchpad.net/rally/+bug/1595081]

	[existing users] context cannot fetch 'tenant' and 'user' details from cloud
deployment

Launchpad bug-report #1602157 [https://bugs.launchpad.net/rally/+bug/1602157]

	UnboundLocalError: local variable 'cmd' referenced before assignment

Launchpad bug-report #1587941 [https://bugs.launchpad.net/rally/+bug/1587941]

	[Reports] Fix trends report generation if there are n/a results

Documentation

	Add page about task reports

RTD page for reports [http://rally.readthedocs.io/en/0.6.0/reports.html]

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.7.0

Overview

	Release date
	10/11/2016

Details

Specs & Feature Requests

	[Used] Ported all rally scenarios to class base

Spec reference [https://github.com/openstack/rally/blob/0.7.0/doc/specs/implemented/class-based-scenarios.rst]

	[Implemented] New Plugins Type - Hook [https://github.com/openstack/rally/blob/0.7.0/doc/specs/implemented/hook_plugins.rst]

Database

Warning

Database schema is changed, you must run
rally-manage db upgrade [http://rally.readthedocs.io/en/0.7.0/cli/cli_reference.html#rally-manage-db-upgrade]
to be able to use old Rally installation with latest release.

	[require migration] fix for wrong format of "verification_log" of tasks

	[require migration] remove admin_domain_name from OpenStack deployments

Rally Deployment

	Remove admin_domain_name from openstack deployment
Reason: admin_domain_name parameter is absent in Keystone Credentials.

Rally Task

	[Trends][Reports] Use timestamps on X axis in trends report

	[Reports] Add new OutputTextArea chart plugin

New chart plugin can show arbitrary textual data on
"Scenario Stata -> Per iteration" tab.

This finally allows to show non-numeric data like IP addresses, notes and
even long comments.

Plugin Dummy.dummy_output [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#dummy-dummy-output-scenario]
is also updated to provide demonstration.

	[cli] Add version info to rally task start output

	[api] Allow to delete stopped tasks without force=True

It is reasonable to protect deletion of running tasks (statuses INIT,
VERIFYING, RUNNING, ABORTING and so on...) but it is strange to protect
deletion for stopped tasks (statuses FAILED and ABORTED). Also this is
annoying in CLI usage.

	Added hooks and triggers.

Hook is a new entity which can be launched on specific events. Trigger is
another new entity which processes events and launches hooks.
For example, hook can launch specific destructive action - just execute cli
command(we have sys_call hook for this task) and it can be launched by
simple trigger on specific iteration(s) or time (there is event trigger).

Rally Verify

Scenario tests in Tempest require an image file. Logic of obtaining this image
is changed:

	If CONF.tempest.img_name_regex is set, Rally tries to find an image matching
to the regex in Glance and download it for the tests.

	If CONF.tempest.img_name_regex is not set (or Rally didn't find the image
matching to CONF.tempest.img_name_regex), Rally downloads the image by the
link specified in CONF.tempest.img_url.

Plugins

Scenarios:

	Removed: Dummy.dummy_with_scenario_output [http://rally.readthedocs.io/en/0.6.0/plugin/plugin_reference.html#dummy-dummy-with-scenario-output-scenario]

It was deprecated in 0.5.0

Warning

This plugin is not available anymore in 0.7.0

	NEW!!:

	MagnumClusterTemplates.list_cluster_templates [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#magnumclustertemplates-list-cluster-templates-scenario]

	MagnumClusters.list_clusters [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#magnumclusters-list-clusters-scenario]

	MagnumClusters.create_and_list_clusters [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#magnumclusters-create-and-list-clusters-scenario]

	NovaAggregates.create_aggregate_add_and_remove_host [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaaggregates-create-aggregate-add-and-remove-host-scenario]

	NovaAggregates.create_and_list_aggregates [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaaggregates-create-and-list-aggregates-scenario]

	NovaAggregates.create_and_delete_aggregate [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaaggregates-create-and-delete-aggregate-scenario]

	NovaAggregates.create_and_update_aggregate [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaaggregates-create-and-update-aggregate-scenario]

	NovaFlavors.create_and_get_flavor [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaflavors-create-and-get-flavor-scenario]

	NovaFlavors.create_flavor_and_set_keys [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaflavors-create-flavor-and-set-keys-scenario]

	NovaHypervisors.list_and_get_hypervisors [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novahypervisors-list-and-get-hypervisors-scenario]

	NovaServers.boot_server_associate_and_dissociate_floating_ip [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#novaservers-boot-server-associate-and-dissociate-floating-ip-scenario]

	KeystoneBasic.authenticate_user_and_validate_token [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#keystonebasic-authenticate-user-and-validate-token-scenario]

Contexts:

	NEW!!:

	Manila manila_security_services [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#manila-security-services-context]

	Magnum cluster_templates [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#cluster-templates-context]

	Magnum clusters [http://rally.readthedocs.io/en/0.7.0/plugin/plugin_reference.html#clusters-context]

OSClients:

Port all openstack clients to use keystone session.

Bug fixes

	[tasks] rally task detailed incorrect / inconsistent output

Launchpad bug-report #1562713 [https://bugs.launchpad.net/rally/+bug/1562713]

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.8.0

Overview

	Release date
	1/25/2017

Details

Specs & Feature Requests

	[Implemented] Refactor Verification Component [https://github.com/openstack/rally/blob/0.8.0/doc/specs/implemented/verification_refactoring.rst]

	[Implemented] Scaling & Refactoring Rally DB [https://github.com/openstack/rally/blob/0.8.0/doc/specs/implemented/db_refactoring.rst]

Installation

We switched to use bindep library for checking required system packages.
All our dependencies moved to separate file (like requirements.txt for python
packages) bindep.txt [https://github.com/openstack/rally/blob/0.8.0/bindep.txt].

Database

Warning

Database schema is changed, you must run
rally-manage db upgrade [http://rally.readthedocs.io/en/0.8.0/cli/cli_reference.html#rally-manage-db-upgrade]
to be able to use old Rally installation with latest release.

	change structure of database to be more flexible

	save raw task results in chunks (see raw_result_chunk_size option of
[DEFAULT] rally configuration section)

	add db revision check in rally API, so it is impossible to use rally with
wrong db now.

Rally API

Single entry point for Rally API is added - rally.api.API . Old API classes
(rally.api.Task, rally.api.Verification, rally.api.Deployment) are
deprecated now.

Rally CLI

	rally task sla_check is deprecated now in favor of
rally task sla-check

	Deprecated category rally show was removed.

	rally plugin list is extended with plugin base column

Task Component

	[Random names] scenario for checking performance of generate_random_name
method is added to our CI with proper SLA. Be sure, whatever number of random
names you need, it will not affect performance of Rally at all, we checked.

	[atomic actions] scenario for checking performance of calculating atomic
actions is added to our CI with proper SLA. Be sure, whatever number atomics
you have in scenarios, it will not affect performance of Rally at all, we
checked.

	[services] new entity is introduced for helping to provide compatibility
layer between different API versions of one service.

Verification component

We completely redesign the whole Verification component. For more details see
our new docs for that component [http://rally.readthedocs.io/en/0.8.0/verification/index.html]

Unfortunately, such big change could not be done in backward compatible way,
so old code is not compatible with new one. See HowTo migrate from
Verification component 0.7.0 to 0.8.0 [http://rally.readthedocs.io/en/0.8.0/verification/howto/migrate_from_old_design.html]

Plugins

Services:

	Glance:

Switched from V1 to V2 API by default.

	Keystone:

	Transmit endpoint_type to keystoneclient

	Full keystone V3 support

Scenarios:

	Updated:

	The meaning of the volume_type argument is changes in
`CinderVolumes.create_snapshot_and_attach_volume

<http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumes-create-snapshot-and-attach-volume-scenario>`_

scenario. It should contain actual volume type instead of boolean value to
choose random volume type.

	Extend GlanceImages.create_image_and_boot_instances [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#glanceimages-create-image-and-boot-instances-scenario]
with create_image_kwargs and boot_server_kwargs arguments.

	NEW!!:

	CeilometerAlarms.create_and_get_alarm [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#ceilometeralarms-create-and-get-alarm-scenario]

	CinderVolumeBackups.create_incremental_volume_backup [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumebackups-create-incremental-volume-backup-scenario]

	CinderVolumeTypes.create_and_delete_volume_type [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumetypes-create-and-delete-volume-type-scenario]

	CinderVolumeTypes.create_volume_type_and_encryption_type [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumetypes-create-volume-type-and-encryption-type-scenario]

	CinderVolumes.create_and_accept_transfer [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumes-create-and-accept-transfer-scenario]

	CinderVolumes.create_and_get_volume [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumes-create-and-get-volume-scenario]

	CinderVolumes.create_volume_and_update_readonly_flag [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumes-create-volume-and-update-readonly-flag-scenario]

	CinderVolumes.list_transfers [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumes-list-transfers-scenario]

	CinderVolumes.list_types [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#cindervolumes-list-types-scenario]

	KeystoneBasic.create_and_get_role [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#keystonebasic-create-and-get-role-scenario]

	ManilaShares.create_and_list_share [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#manilashares-create-and-list-share-scenario]

	ManilaShares.set_and_delete_metadata [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#manilashares-set-and-delete-metadata-scenario]

	MistralExecutions.create_execution_from_workbook [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#mistralexecutions-create-execution-from-workbook-scenario]

	MistralExecutions.list_executions [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#mistralexecutions-list-executions-scenario]

	NeutronLoadbalancerV2.create_and_list_loadbalancers [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#neutronloadbalancerv2-create-and-list-loadbalancers-scenario]

	NeutronNetworks.create_and_show_network [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#neutronnetworks-create-and-show-network-scenario]

	NeutronNetworks.list_agents [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#neutronnetworks-list-agents-scenario]

	NovaAggregates.create_aggregate_add_host_and_boot_server [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novaaggregates-create-aggregate-add-host-and-boot-server-scenario]

	NovaAggregates.create_and_get_aggregate_details [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novaaggregates-create-and-get-aggregate-details-scenario]

	NovaFlavors.create_and_delete_flavor [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novaflavors-create-and-delete-flavor-scenario]

	NovaFlavors.create_flavor_and_add_tenant_access [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novaflavors-create-flavor-and-add-tenant-access-scenario]

	NovaHosts.list_and_get_hosts [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novahosts-list-and-get-hosts-scenario]

	NovaHypervisors.list_and_get_uptime_hypervisors [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novahypervisors-list-and-get-uptime-hypervisors-scenario]

	NovaHypervisors.list_and_search_hypervisors [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novahypervisors-list-and-search-hypervisors-scenario]

	NovaHypervisors.statistics_hypervisors [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novahypervisors-statistics-hypervisors-scenario]

	NovaSecGroup.boot_server_and_add_secgroups [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novasecgroup-boot-server-and-add-secgroups-scenario]

	NovaServerGroups.create_and_list_server_groups [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#novaservergroups-create-and-list-server-groups-scenario]

	Quotas.nova_get [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#quotas-nova-get-scenario]

Hooks:

	NEW!!:

	fault_injection [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#fault-injection-hook]

Runners

	Updated:

	RPS runner [http://rally.readthedocs.io/en/0.8.0/plugins/plugin_reference.html#rps-scenario-runner]
is extended with ability to increase 'rps' value by arithmetic progression
across certain duration. Now it can be also a dict specifying progression
parameters:

rps": {
 "start": 1,
 "end": 10,
 "step": 1,
 "duration": 2
}

This will generate rps value: start, start + step, start + 2 * step, ..,
end across certain 'duration' seconds each step. If iteration count not
ended at the last step of progression, then rps will continue to generate
with "end" value. Note that the last rps could be generated smaller.

Fixed bugs

	[hooks] incorrect encoding of stdout/stderr streams opened by sys_call hook
for py3

	[hooks] sorting Hook column at HTML report doesn't work

	[tasks][scenarios][neutron] L3 HA: Unable to complete operation on subnet

Launchpad bug-report #1562878 [https://bugs.launchpad.net/rally/+bug/1562878]

	[tasks] JSON report doesn't save order of atomics

	[tasks][cleanup][nova] Failed to remove aggregate which has hosts in it

	[tasks] --abort-on-sla-failure [http://rally.readthedocs.io/en/0.8.0/cli_reference.html#task-start-abortonslafailure]
mechanism works only for current workload, but does not stop the next ones.

	[hooks] hooks section isn't displayed in HTML report

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

 	All release notes

Rally v0.8.1

Overview

	Release date
	1/27/2017

Details

Fix for python requirements list.

Plugins

Scenarios:

	Updated:

	Use new network for each subnet at
`NeutronNetworks.create_and_list_subnets

<http://rally.readthedocs.io/en/0.8.1/plugins/plugin_reference.html#neutronnetworks-create-and-list-subnets-scenario>`_

scenario.

	NEW!!:

	CinderVolumeTypes.create_and_list_encryption_type [http://rally.readthedocs.io/en/0.8.1/plugins/plugin_reference.html#cindervolumetypes-create-and-list-encryption-type-scenario]

	Quotas.cinder_get [http://rally.readthedocs.io/en/0.8.1/plugins/plugin_reference.html#quotas-cinder-get-scenario]

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Rally 0.8.1 documentation

 	Project Info and Release Notes

Rally v0.8.1

Overview

	Release date
	1/27/2017

Details

Fix for python requirements list.

Plugins

Scenarios:

	Updated:

	Use new network for each subnet at
`NeutronNetworks.create_and_list_subnets

<http://rally.readthedocs.io/en/0.8.1/plugins/plugin_reference.html#neutronnetworks-create-and-list-subnets-scenario>`_

scenario.

	NEW!!:

	CinderVolumeTypes.create_and_list_encryption_type [http://rally.readthedocs.io/en/0.8.1/plugins/plugin_reference.html#cindervolumetypes-create-and-list-encryption-type-scenario]

	Quotas.cinder_get [http://rally.readthedocs.io/en/0.8.1/plugins/plugin_reference.html#quotas-cinder-get-scenario]

Thanks

2 Everybody!

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Rally 0.8.1 documentation

Index

 B
 | C
 | E
 | G
 | I
 | L
 | M
 | O
 | R
 | U
 | V

B

 	

 	base_ref (rally.verification.reporter.VerificationReporter attribute)

C

 	

 	configure() (rally.verification.manager.VerifierManager method)

E

 	

 	extend_configuration() (rally.verification.manager.VerifierManager method)

G

 	

 	generate() (rally.verification.reporter.VerificationReporter method)

 	

 	get_configuration() (rally.verification.manager.VerifierManager method)

I

 	

 	install() (rally.verification.manager.VerifierManager method)

 	install_extension() (rally.verification.manager.VerifierManager method)

 	

 	is_configured() (rally.verification.manager.VerifierManager method)

L

 	

 	list_extensions() (rally.verification.manager.VerifierManager method)

 	

 	list_tests() (rally.verification.manager.VerifierManager method)

M

 	

 	make() (rally.verification.reporter.VerificationReporter static method)

O

 	

 	override_configuration() (rally.verification.manager.VerifierManager method)

R

 	

 	run() (rally.verification.manager.VerifierManager method)

U

 	

 	uninstall() (rally.verification.manager.VerifierManager method)

 	

 	uninstall_extension() (rally.verification.manager.VerifierManager method)

V

 	

 	validate() (rally.verification.reporter.VerificationReporter class method)

 	validate_args() (rally.verification.manager.VerifierManager method)

 	

 	VerificationReporter (class in rally.verification.reporter)

 	VerifierManager (class in rally.verification.manager)

 Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

 _images/Report-Verify-for-4-Verifications.png
erifications results

Verification UUID Status Startedat Finished at Tests count Tests duration, sec ~ success.
86a70461-5460-4032-830b-{dadbaleate finished 2017-01-19 145228 2017-01-19 145244 9 0672
75045cal7ae2-4109-ae28-77cBeale241f finished 2017-01-19 145525 2017-01-19 145542 9 10504
149100c9-6772-45be-8061-02252428063c finished 2017-01-19 15:00:56 2017-01-19 1501:13 9 10477

Filler tests by status:

I @

Test name (shown 9)
tempestaplcompue admin.est_aggregales AggregalesAdminTesUSON lest_aggregale_add_host creale_server wilh_az
tempestapl.compue.admin est_aggregales AggregalesAdminTesUSON fest_aggregate_add_host_ gel detals
tempestaplcompue.admin est_aggregales AggregalesAdminTesUSON fest_aggregate_add_host lst
tempestapl.compue.admin est_aggregales AggregalesAdminTesUSON fest_aggregate_add_remove_host
tempestaplcompueadmin est_aggregales AggregalesAdminTesLISON fest_aggregate_creale_delele
tempestaplcompue.admin est_aggregales AggregalesAdminTestSON fest_aggregale_creale._delele_wilh_az
tempestaplcompue admin est_aggregales AggregalesAdminTesUSON.lest_aggregale_creale_ update_meladata_get detals
tempestaplcompue.admin est_aggregales AggregalesAdminTesUISON.fest_aggregate_create_ update_wilh az
tempestapl.compue.admin est_aggregales AggregalesAdminTesUSON fest_aggregale_creale.verly_entry_in_lit

86a70461-5460-4032-830b-1dadb3afeale 75cd5cal-7ae2-4199-ac28-T7c8eate241

il 0559
success 1031
success 0921
success 0727
success 0646
success 0711
success 0869
success 0819

Suceess 0506

110543 (0016)
success 0867 (0.164)
success 0946 (+0.025)
success 0823 (+0.096)
2110709 (+0.069)

@1l 0657 (0.054)

il 05821 (0.048)
success 0776 (0.041)
2110536 (+0.03)

“Toggle Al Filters

149106c9-6772-45be-8001-02252428063c
110548 (0011)

success 0862 (0.149)

success 0.967 (+0.046)

Success 1.171 (+0.444)

il 0851 (+0.205)

@i1072 (10.021)

il 1011 (10.142)

success 0870 (+0.051)

2110546 (+0.04)

_images/Report-Task-Overview.png
Task overvew

Input

Scenario. Loadduration(s) Fulduation(s) Norations Rumner Erors Success (SLA)
> Authenticate Auheniicate xeysione 220 8078 W constant 0 v
T Autenticate valdate_glance 1276 4362 10 constant 0 .

Autenticate vaidate_heat 185 5825 10 constant 0 .
> EIEETITD GellometerMeters ist_melers 1929 3270 10 constant 0 .
» CeilometerQueries CellometerResourceist_resources. 2009 354 10 constant 0 .

CellometerSamples st_samples. 1401 2705 10 constant 0 .
> CeilometerResource

Collomsterstatsgot_stats 5346 23978 10 constant 0 .
> CeilometerSamples. Dummydummy 1021 2075 2 constant 0 .

Dummydummy-10 0010 1597 1 constant 0 .
> CeilometerStats e

s 1 P L ans - . N L

_images/Report-Task-Scenario-Data-Aggregated.png
Overview | Scenario Data | Input task

Aggregated Per iteration

StatsTable Example

This is a stub description text

Action Min(sec) Medan(sec)
foostat 1 n
barstat 2 ”
spamsat 2 1

StackedArea Example

Measure this in Foo units

90%lle (sec)
193
21

241

9%l (sec) Max (sec) Avg(sec) Count
221 2 6075 2
211 2 77 2
2 2 7575 2

@01 ©f02 ®f03 ©fod @05 Biob

_images/Report-Trends-single-run.png
Total | Configuration

This workload has single run so trends can not be displayed.
There should be at least two workload resuls with the same configuration

_static/comment.png

_static/plus.png

_static/down.png

_images/Report-Multiple-Configurations-Overview.png
Benchmark overview

Input ile
Scenario s Load duration s)

¥ NovaServers. NovaServers boot_and_delets_server 72234
NovaServers boot_and_delets_server2 71030

oot and_delets_server 2]

Ful duration (s)
o160
oz

_static/comment-close.png

_images/Report-Collage.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_images/Report-Verify-tracebacks.png
tempest.apl.compute.admin fest_aggregates.AggregatesAdminTest/SON test_aggregate_create_delete Success 0646 il 0,709 (+0.063)
75c45caf-7ae2-4199-2028-T7cBeale24 11

Traceback (most recent call last):
File "tempest/api/compute/admin/test_aggregates.py"
self.assertEqual (1, 0)
File "/home/rally-user/.rally/verification/verifier-c939f5aa-ee74-deae-9864-Tabdac3s5de3/ . venv/local /Lib/python2.7/site-packages/testtools/testcase. py", line 411,
self.assertThat (observed, matcher, message)
File "/home/rally-user/.raily/verification/verifier-co39fsaa-ee74-deae-9864-Tabdac3s5de3/ . venv/Local/Lib/python2.7/site-packages/testtools/ testcase. py'
raise misnatch_error
‘testtools.matchers._impl.MismatchError: 1 I

line 76, in test aggregate create delete

Line 498,

14910dc9-6772-45be-8001-02252428063¢

Traceback (most recent call last
File "tempest/api/compute/adnin/test_aggregates.py", line 76, in test aggregate create delete
self.assertEqual (1, 0)
File "/home/rally-user/.rally/verification/verifier-c939f5aa-ee74-deae-9864-Tabdac3s5de3/ . venv/local /Lib/python2.7/site-packages/testtools/testcase. py", line 411,
self.assertThat (observed, matcher, message)
File "/home/rally-user/.raily/verification/verifier-c939f5aa-ee74-deae-9864-Tabdac3s5de3/ . venv/local /Lib/python2.7/site-packages/ testtools/testcase. py", line 498,
raise misnatch_error
‘testtools.matchers._impl.MismatchError: 1

tempestapi.compute.admin.test_aggregates. AggregatesAdminTestSON.test_aggregate_create_delete_with_az success 0.711 fail 0.657 (-0.054)

fail 0851 (+0.205)

in assertequal

in assertThat

in assertequal

in assertThat

1ail 0732 (+0.021)

_images/Report-Scenario-Atomic.png
benchmark results

Benchmark overview NovaServers.boot_and_delete_server (87.546s)
Input ile
Detais

Charts for each Atomic Action

@5ickes Ostream OExpanded nova boot_server nova delte_server
1637

1800

800
600
200

000
4 2 3) s . 7 s B 0

Heration (oder number of method'scal)

_images/Report-Task-Total-durations.png
Action

Keystone.create_user

Keystone delete_user

total

@ Stacked

Min(sec) Median (sec)

0343 0549
0252 048
0713 0975

Ostream OExpanded

S0%lle (sec) 95%le (sec)
0732 0736
0559 056
1209 126

5 6
Heration sequence number

Max (sec)
074
05

127

Avg (sec)
0553
0.448

1.001

@duration

Success Count

000% 10
000% 10
1000% 10
idle_duraton

_images/Report-Task-Scenario-Data-Per-iteration.png
Overview | Scenario Data | Input task

Agaregated Per iteration

Iteration4 v

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Lines

Iteration 5 liption text for Complete Lines
eraton? |
Iteration 8 ®Fo0 ©Bar @Spam

Iteration 9

Iteration 10
Iteration 11
Iteration 12
Iteration 13
Iteration 14
Iteration 15
Iteration 16
Iteration 17
Iteration 18
Iteration 19

1 2 3 4 5 Y B
This is a custom X-axis label

verification/overview.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

Historical background

Tempest, OpenStack’s official test suite, is a powerful tool for running a set
of functional tests against an OpenStack cluster. Tempest automatically runs
against every patch in every project of OpenStack, which lets us avoid merging
changes that break functionality.

Unfortunately, it has limited opportunities to be used, to process its results,
etc. That is why we started Verification Component initiative a long time ago
(see a blog post [https://www.mirantis.com/blog/rally-openstack-tempest-testing-made-simpler/]
for more details, but be careful as all user interface is changed completely
since that time).

What is Verification Component and why do you need it?

The primary goal of Rally Product is to provide a simple way to do complex
things. As for functional testing, Verification Component includes interfaces
for:

		Managing things. Create an isolated virtual environment and install
verification tool there? Yes, we can do it! Clone tool from Git repositories?
Sure! Store several versions of one tool (you know, sometimes they are
incompatible, with different required packages and so on)? Of course!
In general, Verification Component allows to install, upgrade, reinstall,
configure your tool. You should not care about zillion options anymore Rally
will discover them via cloud UX and make the configuration file for you
automatically.

		Launching verifiers. Launchers of specific tools don't always contain all
required features, Rally team tries to fix this omission. Verification
Component supports some of them like expected failures, a list of tests to
skip, a list of tests to launch, re-running previous verification or just
failed tests from it and so on. Btw, all verification runs arguments are
stored in the database.

		Processing results. Rally DataBase stores all verifications and you can obtain unified (across different verifiers)
results at any time. You can find a verification run summary there, run
arguments which were used, error messages and etc. Comparison mechanism for
several verifications is available too. Verification reports can be generated
in several formats: HTML, JSON, JUnit-XML (see Verification reports
for more details). Also, reports mechanism is expendable and you can write
your own plugin for whatever system you want.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_modules/rally/verification/manager.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

 		Module code »

 Source code for rally.verification.manager

All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

import abc
import inspect
import os
import re
import shutil
import sys

import six

from rally.common.i18n import _LE, _LI
from rally.common.io import subunit_v2
from rally.common import logging
from rally.common.plugin import plugin
from rally import exceptions
from rally.verification import context
from rally.verification import utils

LOG = logging.getLogger(__name__)

URL_RE = re.compile(
 r"^(?:http|ftp)s?://" # http:// or https://
 r"(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+" # domain
 r"(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|" # domain
 r"localhost|" # localhost
 r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})" # IP
 r"(?::\d+)?" # optional port
 r"(?:/?|[/?]\S+)$", re.IGNORECASE)

class VerifierSetupFailure(exceptions.RallyException):
 msg_fmt = "Failed to set up verifier '%(verifier)s': %(message)s"

def configure(name, namespace="default", default_repo=None,
 default_version=None, context=None):
 """Decorator to configure plugin's attributes.

 :param name: Plugin name that is used for searching purpose
 :param namespace: Plugin namespace
 :param default_repo: Default repository to clone
 :param default_version: Default version to checkout
 :param context: List of contexts that should be executed for verification
 """
 def decorator(plugin):
 plugin._configure(name, namespace)
 plugin._meta_set("default_repo", default_repo)
 plugin._meta_set("default_version", default_version or "master")
 plugin._meta_set("context", context or {})
 return plugin

 return decorator

@plugin.base()
@six.add_metaclass(abc.ABCMeta)
[docs]class VerifierManager(plugin.Plugin):
 """Verifier base class.

 This class provides an interface for operating specific tool.
 """

 # These dicts will be used for building docs. PS: we should find a better
 # place for them
 RUN_ARGS = {"pattern": "a regular expression of tests to launch.",
 "concurrency": "Number of processes to be used for launching "
 "tests. In case of 0 value, number of processes"
 " will be equal to number of CPU cores.",
 "load_list": "a list of tests to launch.",
 "skip_list": "a list of tests to skip (actually, it is a dict "
 "where keys are names of tests, values are "
 "reasons).",
 "xfail_list": "a list of tests that are expected to fail "
 "(actually, it is a dict where keys are names "
 "of tests, values are reasons)."}

 @classmethod
 def _get_doc(cls):
 run_args = {}
 for parent in inspect.getmro(cls):
 if hasattr(parent, "RUN_ARGS"):
 for k, v in parent.RUN_ARGS.items():
 run_args.setdefault(k, v)

 doc = cls.__doc__ or ""
 doc += "\n**Running arguments**:\n%s" % "\n".join(
 sorted([" * *%s*: %s" % (k, v) for k, v in run_args.items()]))

 doc += "\n**Installation arguments**:\n"
 doc += (" * *system_wide*: Whether or not to use the system-wide "
 "environment for verifier instead of a virtual environment. "
 "Defaults to False.\n"
 " * *version*: Branch, tag or commit ID to checkout before "
 "verifier installation. Defaults to %(default_version)s\n"
 " * *source*: Path or URL to the repo to clone verifier from."
 " Default to %(default_source)s" % {
 "default_version": cls._meta_get("default_version"),
 "default_source": cls._meta_get("default_repo")})

 return doc

 def __init__(self, verifier):
 """Init a verifier manager.

 :param verifier: `rally.common.objects.verifier.Verifier` instance
 """
 self.verifier = verifier

 @property
 def base_dir(self):
 return os.path.expanduser(
 "~/.rally/verification/verifier-%s" % self.verifier.uuid)

 @property
 def home_dir(self):
 return os.path.join(self.base_dir, "for-deployment-%s"
 % self.verifier.deployment["uuid"])

 @property
 def repo_dir(self):
 return os.path.join(self.base_dir, "repo")

 @property
 def venv_dir(self):
 return os.path.join(self.base_dir, ".venv")

 @property
 def environ(self):
 env = os.environ.copy()
 if not self.verifier.system_wide:
 # activate virtual environment
 env["VIRTUAL_ENV"] = self.venv_dir
 env["PATH"] = "%s:%s" % (
 os.path.join(self.venv_dir, "bin"), env["PATH"])
 return env

[docs] def validate_args(self, args):
 """Validate given arguments to be used for running verification.

 :param args: A dict of arguments with values
 """

 # NOTE(andreykurilin): By default we do not use jsonschema here.
 # So it cannot be extended by inheritors => requires duplication.
 if "pattern" in args:
 if not isinstance(args["pattern"], six.string_types):
 raise exceptions.ValidationError(
 "'pattern' argument should be a string.")
 if "concurrency" in args:
 if (not isinstance(args["concurrency"], int) or
 args["concurrency"] < 0):
 raise exceptions.ValidationError(
 "'concurrency' argument should be a positive integer or "
 "zero.")
 if "load_list" in args:
 if not isinstance(args["load_list"], list):
 raise exceptions.ValidationError(
 "'load_list' argument should be a list of tests.")
 if "skip_list" in args:
 if not isinstance(args["skip_list"], dict):
 raise exceptions.ValidationError(
 "'skip_list' argument should be a dict of tests "
 "where keys are test names and values are reasons.")
 if "xfail_list" in args:
 if not isinstance(args["xfail_list"], dict):
 raise exceptions.ValidationError(
 "'xfail_list' argument should be a dict of tests "
 "where keys are test names and values are reasons.")

 def validate(self, run_args):
 """Validate a verifier context and run arguments."""
 context.ContextManager.validate(self._meta_get("context"))
 self.validate_args(run_args)

 def _clone(self):
 """Clone a repo and switch to a certain version."""
 source = self.verifier.source or self._meta_get("default_repo")
 if not URL_RE.match(source) and not os.path.exists(source):
 raise exceptions.RallyException("Source path '%s' is not valid."
 % source)
 if logging.is_debug():
 LOG.debug("Cloning verifier repo from %s into %s.", source,
 self.repo_dir)
 else:
 LOG.info("Cloning verifier repo from %s.", source)
 utils.check_output(["git", "clone", source, self.repo_dir])

 version = self.verifier.version or self._meta_get("default_version")
 if version and version != "master":
 LOG.info("Switching verifier repo to the '%s' version." % version)
 utils.check_output(["git", "checkout", version], cwd=self.repo_dir)

[docs] def install(self):
 """Clone and install a verifier."""
 utils.create_dir(self.base_dir)

 self._clone()

 if self.verifier.system_wide:
 self.check_system_wide()
 else:
 self.install_venv()

[docs] def uninstall(self, full=False):
 """Uninstall a verifier.

 :param full: If False (default behaviour), only deployment-specific
 data will be removed
 """
 path = self.base_dir if full else self.home_dir
 if os.path.exists(path):
 shutil.rmtree(path)

 def install_venv(self):
 """Install a virtual environment for a verifier."""
 if os.path.exists(self.venv_dir):
 # NOTE(andreykurilin): It is necessary to remove the old env while
 # performing update action.
 LOG.info("Deleting old virtual environment.")
 shutil.rmtree(self.venv_dir)

 LOG.info("Creating virtual environment. It may take a few minutes.")

 LOG.debug("Initializing virtual environment in %s directory.",
 self.venv_dir)
 utils.check_output(["virtualenv", "-p", sys.executable, self.venv_dir],
 cwd=self.repo_dir,
 msg_on_err="Failed to initialize virtual env "
 "in %s directory." % self.venv_dir)

 LOG.debug("Installing verifier in virtual environment.")
 # NOTE(ylobankov): Use 'develop mode' installation to provide an
 # ability to advanced users to change tests or
 # develop new ones in verifier repo on the fly.
 utils.check_output(["pip", "install", "-e", "./"],
 cwd=self.repo_dir, env=self.environ)

 def check_system_wide(self, reqs_file_path=None):
 """Check that all required verifier packages are installed."""
 LOG.debug("Checking system-wide packages for verifier.")
 import pip
 reqs_file_path = reqs_file_path or os.path.join(self.repo_dir,
 "requirements.txt")
 required_packages = set(
 [r.name.lower() for r in pip.req.parse_requirements(
 reqs_file_path, session=False)])
 installed_packages = set(
 [r.key for r in pip.get_installed_distributions()])
 missed_packages = required_packages - installed_packages
 if missed_packages:
 raise VerifierSetupFailure(
 "Missed package(s) for system-wide installation found. "
 "Please install '%s'." % "', '".join(sorted(missed_packages)),
 verifier=self.verifier.name)

 def checkout(self, version):
 """Switch a verifier repo."""
 LOG.info("Switching verifier repo to the '%s' version.", version)
 utils.check_output(["git", "checkout", "master"], cwd=self.repo_dir)
 utils.check_output(["git", "remote", "update"], cwd=self.repo_dir)
 utils.check_output(["git", "pull"], cwd=self.repo_dir)
 utils.check_output(["git", "checkout", version], cwd=self.repo_dir)

[docs] def configure(self, extra_options=None):
 """Configure a verifier.

 :param extra_options: a dictionary with external verifier specific
 options for configuration.
 :raises NotImplementedError: This feature is verifier-specific, so you
 should override this method in your plugin if it supports
 configuration
 """
 raise NotImplementedError(
 _LI("'%s' verifiers don't support configuration at all.")
 % self.get_name())

[docs] def is_configured(self):
 """Check whether a verifier is configured or not."""
 return True

[docs] def override_configuration(self, new_configuration):
 """Override verifier configuration.

 :param new_configuration: Content which should be used while overriding
 existing configuration
 :raises NotImplementedError: This feature is verifier-specific, so you
 should override this method in your plugin if it supports
 configuration
 """
 raise NotImplementedError(
 _LE("'%s' verifiers don't support configuration at all.")
 % self.get_name())

[docs] def extend_configuration(self, extra_options):
 """Extend verifier configuration with new options.

 :param extra_options: Options to be used for extending configuration
 :raises NotImplementedError: This feature is verifier-specific, so you
 should override this method in your plugin if it supports
 configuration
 """
 raise NotImplementedError(
 _LE("'%s' verifiers don't support configuration at all.")
 % self.get_name())

[docs] def get_configuration(self):
 """Get verifier configuration (e.g., the config file content)."""
 return ""

[docs] def install_extension(self, source, version=None, extra_settings=None):
 """Install a verifier extension.

 :param source: Path or URL to the repo to clone verifier extension from
 :param version: Branch, tag or commit ID to checkout before verifier
 extension installation
 :param extra_settings: Extra installation settings for verifier
 extension
 :raises NotImplementedError: This feature is verifier-specific, so you
 should override this method in your plugin if it supports
 extensions
 """
 raise NotImplementedError(
 _LE("'%s' verifiers don't support extensions.") % self.get_name())

[docs] def list_extensions(self):
 """List all verifier extensions."""
 return []

[docs] def uninstall_extension(self, name):
 """Uninstall a verifier extension.

 :param name: Name of extension to uninstall
 :raises NotImplementedError: This feature is verifier-specific, so you
 should override this method in your plugin if it supports
 extensions
 """
 raise NotImplementedError(
 _LE("'%s' verifiers don't support extensions.") % self.get_name())

 @abc.abstractmethod
[docs] def list_tests(self, pattern=""):
 """List all verifier tests.

 :param pattern: Filter tests by given pattern
 """

 def parse_results(self, results_data):
 """Parse subunit results data of a test run."""
 # TODO(andreykurilin): Support more formats.
 return subunit_v2.parse(six.StringIO(results_data))

 @abc.abstractmethod
[docs] def run(self, context):
 """Run verifier tests.

 Verification Component API expects that this method should return an
 object. There is no special class, you do it as you want, but it should
 have the following properties:

 <object>.totals = {
 "tests_count": <total tests count>,
 "tests_duration": <total tests duration>,
 "failures": <total count of failed tests>,
 "skipped": <total count of skipped tests>,
 "success": <total count of successful tests>,
 "unexpected_success": <total count of unexpected successful tests>,
 "expected_failures": <total count of expected failed tests>
 }

 <object>.tests = {
 <test_id>: {
 "status": <test status>,
 "name": <test name>,
 "duration": <test duration>,
 "reason": <reason>, # optional
 "traceback": <traceback> # optional
 },
 ...
 }

 """

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

project_info/release_notes.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

Release Notes

		All release notes

		Rally v0.8.1

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

 All modules for which code is available

		rally.verification.manager

		rally.verification.reporter

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_modules/rally/verification/reporter.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

 		Module code »

 Source code for rally.verification.reporter

Copyright 2016: Mirantis Inc.
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""
Reporter - its the mechanism for exporting rally verification into specified
system or formats.
"""

import abc

import jsonschema
import six

from rally.common.plugin import plugin
from rally import consts

configure = plugin.configure

REPORT_RESPONSE_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "properties": {
 "files": {
 "type": "object",
 "patternProperties": {
 ".{1,}": {"type": "string"}
 }
 },
 "open": {
 "type": "string",
 },
 "print": {
 "type": "string"
 }
 },
 "additionalProperties": False
}

@plugin.base()
@six.add_metaclass(abc.ABCMeta)
[docs]class VerificationReporter(plugin.Plugin):
 """Base class for all reporters for verifications."""

 def __init__(self, verifications, output_destination):
 """Init reporter

 :param verifications: list of results to generate report for
 :param output_destination: destination of report
 """
 super(VerificationReporter, self).__init__()
 self.verifications = verifications
 self.output_destination = output_destination

 @classmethod
 @abc.abstractmethod
[docs] def validate(cls, output_destination):
 """Validate destination of report.

 :param output_destination: Destination of report
 """

 @abc.abstractmethod
[docs] def generate(self):
 """Generate report

 :returns: a dict with 3 optional elements:

 - key "files" with a dictionary of files to save on disk.
 keys are paths, values are contents;
 - key "print" - data to print at CLI level
 - key "open" - path to file which should be open in case of
 --open flag
 """

 @staticmethod
[docs] def make(reporter_cls, verifications, output_destination):
 """Initialize reporter, generate and validate report.

 It is a base method which is called from API layer. It cannot be
 overridden. Do not even try! :)

 :param reporter_cls: class of VerificationReporter to be used
 :param verifications: list of results to generate report for
 :param output_destination: destination of report
 """
 report = reporter_cls(verifications, output_destination).generate()

 jsonschema.validate(report, REPORT_RESPONSE_SCHEMA)

 return report

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_images/Report-Multiple-Overview.png
ben:

Benchmark overview

Input ile
Scenario s Losdduraon(s) Fullduwation(s) Kerations Rumner Emors Success (SLA)
» KeystoneBasic KeystonoBasic craate_deete_user a7 10081 w0 constant 0 .
NovaServers boot_and_dolee_server 84.196 10203 0 constant 0 .

» NovaServers

_static/up.png

_static/down-pressed.png

miscellaneous/concepts.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

Main concepts of Rally

Benchmark Scenarios

Concept

The concept of benchmark scenarios is a central one in Rally. Benchmark
scenarios are what Rally actually uses to test the performance of an
OpenStack deployment. They also play the role of main building blocks in the
configurations of benchmark tasks. Each benchmark scenario performs a small
set of atomic operations, thus testing some simple use case, usually
that of a specific OpenStack project. For example, the "NovaServers"
scenario group contains scenarios that use several basic operations available
in nova. The "boot_and_delete_server" benchmark scenario from that
group allows to benchmark the performance of a sequence of only two simple
operations: it first boots a server (with customizable parameters) and
then deletes it.

User's view

From the user's point of view, Rally launches different benchmark scenarios
while performing some benchmark task. Benchmark task is essentially a set
of benchmark scenarios run against some OpenStack deployment in a specific
(and customizable) manner by the CLI command:

rally task start --task=<task_config.json>

Accordingly, the user may specify the names and parameters of benchmark
scenarios to be run in benchmark task configuration files. A typical
configuration file would have the following contents:

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor_id": 42,
 "image_id": "73257560-c59b-4275-a1ec-ab140e5b9979"
 },
 "runner": {"times": 3},
 "context": {...}
 },
 {
 "args": {
 "flavor_id": 1,
 "image_id": "3ba2b5f6-8d8d-4bbe-9ce5-4be01d912679"
 },
 "runner": {"times": 3},
 "context": {...}
 }
],
 "CinderVolumes.create_volume": [
 {
 "args": {
 "size": 42
 },
 "runner": {"times": 3},
 "context": {...}
 }
]
}

In this example, the task configuration file specifies two benchmarks to be
run, namely "NovaServers.boot_server" and "CinderVolumes.create_volume"
(benchmark name = ScenarioClassName.method_name). Each benchmark scenario may
be started several times with different parameters. In our example, that's the
case with "NovaServers.boot_server", which is used to test booting servers
from different images & flavors.

Note that inside each scenario configuration, the benchmark scenario is
actually launched 3 times (that is specified in the "runner" field).
It can be specified in "runner" in more detail how exactly the benchmark
scenario should be launched; we elaborate on that in the "Scenario Runners"
section below.

Developer's view

From the developer's perspective, a benchmark scenario is a method marked by a
@configure decorator and placed in a class that inherits from the base
Scenario [https://github.com/openstack/rally/blob/0.1/rally/task/scenario.py#L94]. There may be arbitrary many benchmark scenarios in a scenario
class; each of them should be referenced to (in the task configuration file)
as ScenarioClassName.method_name.

In a toy example below, we define a scenario class MyScenario with one
benchmark scenario MyScenario.scenario. This benchmark scenario tests the
performance of a sequence of 2 actions, implemented via private methods in the
same class. Both methods are marked with the @atomic_action_timer
decorator. This allows Rally to handle those actions in a special way and,
after benchmarks complete, show runtime statistics not only for the whole
scenarios, but for separate actions as well.

from rally.task import atomic
from rally.task import scenario

class MyScenario(scenario.Scenario):
 """My class that contains benchmark scenarios."""

 @atomic.action_timer("action_1")
 def _action_1(self, **kwargs):
 """Do something with the cloud."""

 @atomic.action_timer("action_2")
 def _action_2(self, **kwargs):
 """Do something with the cloud."""

 @scenario.configure()
 def scenario(self, **kwargs):
 self._action_1()
 self._action_2()

Scenario runners

Concept

Scenario Runners in Rally are entities that control the execution type and
order of benchmark scenarios. They support different running strategies for
creating load on the cloud, including simulating concurrent requests from
different users, periodic load, gradually growing load and so on.

User's view

The user can specify which type of load on the cloud he would like to have
through the "runner" section in the task configuration file:

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor_id": 42,
 "image_id": "73257560-c59b-4275-a1ec-ab140e5b9979"
 },
 "runner": {
 "type": "constant",
 "times": 15,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 3
 },
 "quotas": {
 "nova": {
 "instances": 20
 }
 }
 }
 }
]
}

The scenario running strategy is specified by its type and also by some
type-specific parameters. Available types include:

		constant, for creating a constant load by running the scenario for a

fixed number of times, possibly in parallel (that's controlled by the
"concurrency" parameter).

		constant_for_duration that works exactly as constant, but runs the
benchmark scenario until a specified number of seconds elapses
("duration" parameter).

		rps, which executes benchmark scenarios with intervals between two
consecutive runs, specified in the "rps" field in times per second.

		serial, which is very useful to test new scenarios since it just runs the
benchmark scenario for a fixed number of times in a single thread.

Also, all scenario runners can be provided (again, through the "runner"
section in the config file) with an optional "timeout" parameter, which
specifies the timeout for each single benchmark scenario run (in seconds).

Developer's view

It is possible to extend Rally with new Scenario Runner types, if needed.
Basically, each scenario runner should be implemented as a subclass of the
base ScenarioRunner [https://github.com/openstack/rally/blob/master/rally/task/runner.py] class and located in the
rally.plugins.common.runners package [https://github.com/openstack/rally/tree/master/rally/plugins/common/runners]. The interface each scenario runner
class should support is fairly easy:

from rally.task import runner
from rally import consts

class MyScenarioRunner(runner.ScenarioRunner):
 """My scenario runner."""

 # This string is what the user will have to specify in the task
 # configuration file (in "runner": {"type": ...})

 __execution_type__ = "my_scenario_runner"

 # CONFIG_SCHEMA is used to automatically validate the input
 # config of the scenario runner, passed by the user in the task
 # configuration file.

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "properties": {
 "type": {
 "type": "string"
 },
 "some_specific_property": {...}
 }
 }

 def _run_scenario(self, cls, method_name, ctx, args):
 """Run the scenario 'method_name' from scenario class 'cls'
 with arguments 'args', given a context 'ctx'.

 This method should return the results dictionary wrapped in
 a runner.ScenarioRunnerResult object (not plain JSON)
 """
 results = ...

 return runner.ScenarioRunnerResult(results)

Benchmark contexts

Concept

The notion of contexts in Rally is essentially used to define different
types of environments in which benchmark scenarios can be launched. Those
environments are usually specified by such parameters as the number of
tenants and users that should be present in an OpenStack project, the
roles granted to those users, extended or narrowed quotas and so on.

User's view

From the user's prospective, contexts in Rally are manageable via the task
configuration files. In a typical configuration file, each benchmark scenario
to be run is not only supplied by the information about its arguments and how
many times it should be launched, but also with a special "context"
section. In this section, the user may configure a number of contexts he needs
his scenarios to be run within.

In the example below, the "users" context specifies that the
"NovaServers.boot_server" scenario should be run from 1 tenant having
3 users in it. Bearing in mind that the default quota for the number of
instances is 10 instances per tenant, it is also reasonable to extend it to,
say, 20 instances in the "quotas" context. Otherwise the scenario would
eventually fail, since it tries to boot a server 15 times from a single tenant.

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor_id": 42,
 "image_id": "73257560-c59b-4275-a1ec-ab140e5b9979"
 },
 "runner": {
 "type": "constant",
 "times": 15,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 3
 },
 "quotas": {
 "nova": {
 "instances": 20
 }
 }
 }
 }
]
}

Developer's view

From the developer's view, contexts management is implemented via Context
classes. Each context type that can be specified in the task configuration
file corresponds to a certain subclass of the base Context [https://github.com/openstack/rally/blob/master/rally/task/context.py] class. Every
context class should implement a fairly simple interface:

from rally.task import context
from rally import consts

@context.configure(name="your_context", # Corresponds to the context field name in task configuration files
 order=100500, # a number specifying the priority with which the context should be set up
 hidden=False) # True if the context cannot be configured through the input task file
class YourContext(context.Context):
 """Yet another context class."""

 # The schema of the context configuration format
 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "additionalProperties": False,
 "properties": {
 "property_1": <SCHEMA>,
 "property_2": <SCHEMA>
 }
 }

 def __init__(self, context):
 super(YourContext, self).__init__(context)
 # Initialize the necessary stuff

 def setup(self):
 # Prepare the environment in the desired way

 def cleanup(self):
 # Cleanup the environment properly

Consequently, the algorithm of initiating the contexts can be roughly seen as
follows:

context1 = Context1(ctx)
context2 = Context2(ctx)
context3 = Context3(ctx)

context1.setup()
context2.setup()
context3.setup()

<Run benchmark scenarios in the prepared environment>

context3.cleanup()
context2.cleanup()
context1.cleanup()

		where the order of contexts in which they are set up depends on the value of

their order attribute. Contexts with lower order have higher priority:
1xx contexts are reserved for users-related stuff (e.g. users/tenants
creation, roles assignment etc.), 2xx - for quotas etc.

The hidden attribute defines whether the context should be a hidden one.
Hidden contexts cannot be configured by end-users through the task
configuration file as shown above, but should be specified by a benchmark
scenario developer through a special @scenario.configure(context={...})
decorator. Hidden contexts are typically needed to satisfy some specific
benchmark scenario-specific needs, which don't require the end-user's
attention. For example, the hidden "cleanup" context
(rally.plugins.openstack.context.cleanup) is used to make generic
cleanup after running benchmark. So user can't change it configuration via task
and break his cloud.

If you want to dive deeper, also see the context manager
(rally.task.context) class that actually implements the algorithm
described above.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_images/Report-Trends-Atomic-actions.png
Total

Atom

Atomic actions Configuration

ic actions durations / success rate

dummy_fail_test

2458

2000

1500

1.000)

0500

0201

30.000)

25.000)

20000

@min ©max @median ©95%ile @90%ile ©avg

1 2 3 4 5 6 7 B 9 10

Task run sequence number

@success

1 2 3 4 5 6 7 B 9 10

Task run sequence number

search.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_images/Report-Task-Failures.png
Task failures (1 iteration failed)
Heration Exceptiontype Exception message
v o2 GefResourceErorSiatus Resource <Snapshat:cofBech-1246-4d60-5013-72166ed39591> has ERROR sialus. Fault na

Traceback (most recent call last)
File "loptstackinewrally/rallyRaskirunnerpy’, line 67, n _run_scenario_once
getatir(scenario_inst, method_name)(**scenario_kwargs)
File "loptstackinewrally/rallyplugins/openstackiscenarios novalservers.py’, line 923, n boot_server_from_volume_snapshot
snapshot = self_create_snapshol(volume.d, False)
File "loptstackinewrally rallyRask/atomic.py",line 84, n func_atomic_actions
1= func{self, "args, **kwargs)
File "loptstackinewrallyirallyplugins/openstackiscenarios/cinder/utls.py",line 275, In _create_snapshot
check _interval=CONFbenchmark.cinder_volume_create_poll_interval
File "loptstackinewrally rally/common/ogging.py”,line 236, in wrapper
return f("args, “*kwargs)
File "loptstackinewrally rallyaskiutis py”, line 148, in walt_for
1d_attr=id_attr
File "loptstackinewrally/rallyaskiutis py”, line 214, in walt_for_status
resource = updae_resource{resource)
File "loptstackinewrallyrallyfaskiutis.py”, line 90, in _get_from_manager
fault=getati(res, "aulf’, "na"))
GetResourceErmorStatus: Resource ¢Snapshot: co fBech-1246-4d6b-b013-72166ed38531> has ERROR status.
Fault:nia

_images/Report-Trends-Configuration.png
Total Atomicactions | Configuration

Workload configuration

{

"runner”: {
“type": "constant",
“concurrency”: 10,
“times": 108

1

"args": {
"exception_probability": .5

¥

1

_images/Report-SLA-Scenario.png
Benchmark overview Dummy.dummy_exception (6.013s)

Input file
Overview | Falures Inputtask

v Dummy
aummy. Load duration: 0.110's Full duration: 6.013 s _terations: 5 Faiures: 5

Service-level agreement

failure_rate Maximum failue rae percent 0.0% fallures, minimum allure rate percent 0% failures, actually 100.0%

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentie 95 percentie

_images/Rally_QA.png
Going
to benchmark Openstack

Openstack cloud required
at scale?

Do you have
one?

You have zillon
servers

Your company
has a big cloud

You are very
rich!

No——»{

Deploy Openstack
on them

Create a lot of VMs.

Buy a bunch of (virtual) servers

Create alot of LXC containers on
hardware that you have

Yes:

_images/Rally-Plugins.png
Tasks
Plugins

<

Scenario Plugin Base
rally.task.scenario.Scenario

Context Plugin Base
rally.task.context.Context

Runner Plugin Base
rally.task.runner.Runner

SLA Plugin Base
rally.task.sla.SLA

OSclients plugin base
rally.osclients.OSClient

Task Processing Chart Plugin Base
rally.task.processing.charts.Chart

Deployment Plugin Base
rally.deployment.engine Engine

ServerProvider Plugin Base
rally.deployment.provider.ProviderFactory

Plugin Base

rally.common.plugin.plugin.Plugin

Deployment
Plugins

_images/Hook-Per-Hook-Report.png
Task overview

Input file

v Dummy

Dummy.dummy (10.073s)

Overview | Hooks | Input task

[- JETe

Plugin Description

sye_cal Fun seript
Agoregated Per hook run
Weraon:2 fteralion: 5 fleraon:8 feration: 13 teration: 17

Staus Triggered by startod at

success eraton: 2 20161208 110113

Lines chart from Hook

Random data generated by rally-jobs/extra/hook_example_script.sh

Yeaxs label

2000

Pie chart from Hook

Yet another data generated by rally-jobs/extraihook_example_script.sh

™ s
m" Y

Finished at

20161208 110113

®Fc0 0Bar @Spam G uiz

@OCat O Tger @uaguar ©Paniner @Lnx

_images/Amqp_rpc_single_reply_queue.png
Time to boot & destroy in seconds

200 times Start and Delete VM, with different

amqp_rpe_single_reply_queue values

16

Concurrent users

30

M tum off
M tum on

_images/Report-Task-Subtask-configuration.png
Subtask Configuration

{
"KeystoneBasic.create_delete user": [
{
“runner”: {
“type": "constant”,
“concurrency”: 10,
“times": 10

}
"sla": {
“failure_rate": {
“max": @
¥
¥

_images/Rally-Actions.png
Major Rally actions

Deploy
(or use existing)
OpenStack cloud

e

Verification,
results

Verify
(run tempest)

i

N S

Profiing
data from
Benchmark Ceilometer
(generate real
user load)
| senchmark
— resuits

Generate report
based on results
of verification,
benchmarks &
profilng info

Get verification
&
" benchmark results

S

Major Rally actions

_images/Report-Verify-filter-by-status.png
erification:

Verification UUID

86a70461-5420-4032-830b-idadb3ateate
75045cal-7ae2-4199-ae28-77cBeale2411
149100c9-6772-45e-80et-0252428063¢

I @

Started at Finished at

20170119 145228 2017-01-19 14:52:44

20170119 145525 2017-01-19 14:55:42

20170119 15:0056 2017-01-19 15:01:13

Tests count Tests duration, sec success skipped expected allures.
9 9672 5 0 0
9 10504 4 o 0
9 10477 4 o 0
Fillr tests by status: o

Test name (shown 5) « 8670461-5460-4032-830-Idadb3ateate
tempestaplcompue admin est_aggregales AggregalesAdminTesUSON lest_aggregale_add_host create_server wih az | fil0559

tempestaplcompueadmin est_aggregales AggregalesAdminTesLISON fest_aggregate_creale_delele success 0646
tempestaplcompue.admin est_aggregales AggregalesAdminTestSON fest_aggregale_creale._delele_wilh_az success 0711

tempest.apl.compute.adminest_aggregates. AggregatesAdminTestISON test_aggregate_create_update_metadata_get_detalls success 0.869

tempest.api.compute.admin.est_aggregates.AggregatesAdminTestISON fest_aggregate_create_verify_entry_in_list Suceess 0506

75c45cat-Tac2-4199-2020-T7cBeato2411
110543 (0016)

2110709 (+0.069)

@1l 0657 (0.054)

il 05821 (0.048)

2110536 (+0.03)

“Toggle Al Filters

149106c9-6772-45be-8001-02252428063c
110548 (0011)

@il 0851 (+0205)

@i1072 (10.021)

il 1011 (10.142)

0110546 (+0.00)

_images/Report-Task-Distribution.png
@success @errors @k

113 127

Herations (frequency)

085 099

100% Duration (seconds)

Square Root Choice v

_images/Rally_Architecture.png
Rally as a APP Rally Core

Rally CLI

entry point of python app

Magic that verifies,
benchmarks & deploys
OpenStack

Rally as a Service
local

(in single
roces;
Rally CLI P)
Rally Manager
ocal orchestrator
Jonal Manager
RPC API
Rally Rally DB.API
python lib AMQP sqlalchemy
HTe RPC API
oslo
messaging
REST API oS
pecan [—AMQP mysq/ postgres / sqlite

_images/Report-Abort-on-SLA-task-2.png
benchmark results

Benchmark overview

Input ile

¥ Authenticate

Authenticate.keystone (45.040s)

Overview Input task
Load duration: 40.631 s Ful duraion: 45.040's lterations: 1410 Failures: 0

Service-level agreement

Critrion Detail
max_seconds_per_teation Maximum seconds per Heration 2.08s<= 10.0s - Falled
faiure_rate Failrerato critria 0.00% <= 0.00% <= 0.0% - Passed
‘max_avg_duration Maximum average duration of one Heraton 5415 <= .00s- Falled

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percontile 95 perconile Success.

total o082 sant 208 10808 14505 1000%

Charts for the Total durations

@siacied OStream OExpanded @durtion
212
2000,

00 00

Success.

Faise

True

1410

ide_duration

Heration (order rumber of method'scal)

_images/Hook-Aggregated-Report.png
Task overview

Input fle

v Dummy.

Dummy.dummy (10.073s)

Overvw | Hooks | nputask
[JEEE

Pugn omcrpon
ot et

Agoregated Per hook run

Statistics table from Hook

Action Min (ssc) Median (sec) 0%ie sec) sie (sec)
Aica " P 122 1630
o " 2 210 208
caral = 190 1978 204

StackedArea chart from Hook
This is generated by rally-jobs/extralhook_example_script.sh

440000
00000,

Max (sec)

20

Mgl coumt
7 s
Y s
w7 s

@Apna 0B @Gamma

_images/Rally_who_is_using.png
CAN@NICAL

FLexTRONICS D]

MIRANTIS

O redhat

\W/

HUAWEI

YaHoO!

.|||.|||.
CISCO.

nte

V/ symantec

_images/Report-Task-Actions-durations.png
@stacked Ostream OExpanded @ keystone create_user © keystone delete_user
1270
1200

1.000|
0.800|
0,600|

0.400|

0.200|

5 6
Heration sequence number

_images/Rally_VM_list.png
Duration (seconds)

4.56,

@Stacked OStream O Expanded Onova.boot_server novalist_servers

100
Iteration (order number of method's call)

_images/Report-Trends-Total.png
Total | Atomicactions Configuration

Total durations

@min ©max @median ©95%ile @90%ile ©avg

7.000)
6.000)

5.000)

4.000)
3.000)
2000

1 2 3 4 5 6 7 B 9 10
Task run sequence number

Total success rate

@success

30.000)

25.000)

20000

1 2 3 4 5 6 7 B 9 10
Task run sequence number

feature_request/implemented/stop_scenario_after_several_errors.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

Stop scenario after several errors

Use case

Starting long tests on the big environments.

Problem description

When we start a rally scenarios on the env where keystone die we get a lot of
time from timeout

Example

Times in hard tests
05:25:40 rally-scenarios.cinder
05:25:40 create-and-delete-volume [4074 iterations, 15 threads] OK 8.91
08:00:02 create-and-delete-snapshot [5238 iterations, 15 threads] OK 17.46
08:53:20 create-and-list-volume [4074 iterations, 15 threads] OK 3.18
12:04:14 create-snapshot-and-attach-volume [2619 iterations, 15 threads] FAIL
14:18:44 create-and-attach-volume [2619 iterations, 15 threads] FAIL
14:23:47 rally-scenarios.vm
14:23:47 boot_runcommand_metadata_delete [5 iterations, 5 threads] FAIL
16:30:46 rally-scenarios.nova
16:30:46 boot_and_list_server [5820 iterations, 15 threads] FAIL
19:19:30 resize_server [5820 iterations, 15 threads] FAIL
02:51:13 boot_and_delete_server_with_secgroups [5820 iterations, 60 threads] FAIL

Times in light variant
00:38:25 rally-scenarios.cinder
00:38:25 create-and-delete-volume [14 iterations, 1 threads] OK 5.30
00:40:39 create-and-delete-snapshot [18 iterations, 1 threads] OK 5.65
00:41:52 create-and-list-volume [14 iterations, 1 threads] OK 2.89
00:45:18 create-snapshot-and-attach-volume [9 iterations, 1 threads] OK 17.75
00:48:54 create-and-attach-volume [9 iterations, 1 threads] OK 20.04
00:52:29 rally-scenarios.vm
00:52:29 boot_runcommand_metadata_delete [5 iterations, 5 threads] OK 128.86
00:56:42 rally-scenarios.nova
00:56:42 boot_and_list_server [20 iterations, 1 threads] OK 6.98
01:04:48 resize_server [20 iterations, 1 threads] OK 22.90

In the hard test we have a lot of timeouts from keystone and a lot of time on
test execution

Possible solution

Improve SLA check functionality to work "online". And add ability to control
execution process and stop load generation in case of sla check failures.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

feature_request/implemented/add_possibility_to_specify_concurrency_for_tempest.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

Running Tempest using custom concurrency

Use case

User might want to use specific concurrency for running tests based on his
deployment and available resources.

Problem description

"rally verify start" command does not allow to specify concurrency
for tempest tests. And they always run using concurrency equal
to amount of CPU cores.

Possible solution

		Add --concurrency option to "rally verify start" command.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

feature_request/implemented/LDAP_support.html

 Navigation

 		
 index

 		Rally 0.8.1 documentation »

Support benchmarking clouds that are using LDAP

Use Case

A lot of production clouds are using LDAP with read only access. It means
that load can be generated only by existing in system users and there is no admin access.

Problem Description

Rally is using admin access to create temporary users that will be used to
produce load.

Possible Solution

		Add some way to pass already existing users

Current Solution

		Allow the user to specify existing users in the configuration of the ExistingCloud deployment plugin

		When such an ExistingCloud deployment is active, and the benchmark task file does not specify the "users" context, use the existing users instead of creating the temporary ones.

		Modify the rally show ... commands to list resources for each user separately.

 © Copyright 2017, OpenStack Foundation.
 Last updated on 'Fri Jan 27 11:10:56 2017, commit 2ff6423'.
 Created using Sphinx 1.3.5.

_images/Hook-Results.png
Task overview

Input fle

v Dummy.

Dummy.dummy (1.620s)

Overview | Hooks | Input task

Plugin Description

sys_call Hook dema.

Per hook run
Horation: 3 fteraion: &

Status. Tiggered by surtedat

suceass ferston: 3 2161213 105408

System call

Args: Ibin/echo foo
RetCode: 0

Staout: o0

‘StdEr: (empty)

Finished at

2161213 105408

_images/Report-Overview.png
Benchmark overview

Inpt e
" Scenario + Load duration (s) Full duration () Merations. Runner Errors. ‘Success (SLA)

¥ NovaServers NovaServers.bool_and_delete_server 70,131 7546 0 comsant 0 .

_images/Report-Scenario-Overview.png
Benchmark overview

Input file

¥ NovaServers

NovaServers.boot_and_delete_server (87.546s)

Overview

Details Input task

Load duration: 70.131's Full duration: 87.546 s lerations: 10 Failures: 0

Total durations

Action Min(sec) Avglse) Max(sec) 90percentie 95 percentie Success Count
ova.poat_server 790 Fres T azar 10805 1000% 0
ova.delete_server s a5 am g ars 1000% 0
total 1255 3621 1637 as 1sam 000% w0

Charts for the Total durations

1637

1400

1200

1000

a0

600

400

200

@5icies Osveam OEspandes @auraton e auraton

_images/Rally_snapshot_vm.png
Duration (seconds)

@Stacked OStream O Expanded @novaboot_server nova.create_image
nova.delete_server " nova.boot_server
@ nova.delete_server () nova.delete_image

20 40 60 80 100
Iteration (order number of method's call)

_images/Report-Abort-on-SLA-task-1.png
benchmark results

Benchmark overview Authenticate.keystone (90.672s)

Input file
Overview Input task
¥ Authenticate

Load duration: 86.158 s Full duration: 90.672 s lterations: 2495 _Failures: 0

Service-level agreement

Criterion Detal Success

max_avg_duration Maximum average duration of one ieration 8.588 <= 5.00s - Falled False

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentile 95 percentile Success. Count

total 0108 858 97 10782 2125 1000% 2495

Charts for the Total durations

@stackes OSteam Oxpanded @auraton © idle_guraton
6589,
0.00|
50.00]
40.0]
30.00]
200)

1000

500 1000 1500 2000
Heraton (oder number of method's cal)

_images/Rally-UseCases.png
Rally for Devs & QA:

Not clear where is issue?
Just run another benchmark
or change load level

[A

" Process & Make
Deploy Simulate real
Rally OpenStack user load aggregate OpenStack
results better
Deploy new OpenStack with:
-1) another configuration
2) code that fix performance issue
3) different third part components
(mysql or psg, rabbit or gpid)
Rally for DevOps:
With admin access
/(crea(e temp usevs)\
Process & Ensure that
Use existing Simulate real
Rally cloud user load aggregate OpenStack
results pass SLA
without admin access /
use set of existing users
Rally CI/CD:

Improve
OpenStack

Deploy OpensStack on continuously

specific hardware and
configuration with

Run specific set Store historical
of benchmarks performance data

latest version of your
tool and code

Track
OpenStack
Quality

_images/Report-Task-Load-profile.png
10,

020

0.40

060
Timeline (seconds)

080

100

@paralel ierations

120

_images/Report-Verify-toggle-tags.png
D @

Test name (shown 9) +

tempest.ap.compute.admin.est_aggregates.AggregatesAdminTestISON test_aggregate_add_host_create_server_with_az
10-960203¢7-5700-409c-0018-240b3646996

tempest.api compute.admin.est_aggregates.AggregatesAdminTestiSON lest_aggregate_add_host_get_detalls
0-eeef473¢-7c52-4940-9109-26d71cBICO36

tempest.apl.compute.admin est_aggregates.AggregatesAdminTestISON fest_aggregate_add_host_list
0-716a10c5-2446-4cdb-Obaa-62c02919b72

_images/Report-Trends-Overview.png
o

aummy

ummy._random s In_atomc

Trends overview

Scanario

Dunmyoummny
Dummytummy_random_fsil_in_somiz

Numberof runs

raam0

no6e0

Avg duraton

esan

_images/Report-Task-Input-file.png
Task overview Input file

4
Authenticate. keystone™: [
> Authenticate i
“context®: {
> CellometerEvents “users®: {
“project domain’: *default”,
N resource managenent_workers”: 20,
CellometerMeters ey
user_choice method": *randon”,
> CellometerQueries. “user_domain®: "default",
users_per. tenant": 10
» CellometerResource)
*rumner: {
» CellometerSamples P 0
“tines*: 40,
> CellometerStats “type": "constant
» CeilometerTrait St
ellometertraiis “failure rate": {
max: 0
> Dummy)
b
» FakePlugin)
“Authenticate.validate_glance™: [
> Glancelmages .
lancelmages 7
rargs®: {
> HitpRequests “repetitions": 2

1

_images/Report-Task-SLA.png
Service-level agreement
Crtterion

pertormance_degradation
max_seconds_per_teration

fallure_rate

max_avg_duration

Detall
Current degradation: 0.952543% - Passed

Maximum seconds per fleration 0.25s <= 1.00s - Passed
Fallure rate crteria 0.00% ¢= 0.00% ¢= 0.00% - Passed
Maximum number of utlers 0 <= 1 - Passed

Average duration of one Hteration 0.25s <= 0.50s - Passed

g

C-

_images/Report-SLA-Overview.png
Benchmark overview
Input fle

Scenario s

Losd duration s) Ful duration (s) Merstions Rumer Emors Success (SLA)
» Dummy Oummy dummy 018 a5 s constant 0
Oummy dummy_excepton 0110

