

 Navigation

 	
 index

 	
 next |

 	Rally 0.1.2 documentation

What is Rally?

OpenStack is, undoubtedly, a really huge ecosystem of cooperative services. Rally is a benchmarking tool that answers the question: “How does OpenStack work at scale?”. To make this possible, Rally automates and unifies multi-node OpenStack deployment, cloud verification, benchmarking & profiling. Rally does it in a generic way, making it possible to check whether OpenStack is going to work well on, say, a 1k-servers installation under high load. Thus it can be used as a basic tool for an OpenStack CI/CD system that would continuously improve its SLA, performance and stability.

[image: _images/Rally-Actions.png]

Contents

	Overview
	Who Is Using Rally

	Use Cases

	Real-life examples

	Architecture

	Installation
	Automated installation

	Rally with DevStack all-in-one installation

	Rally & Docker

	Rally step-by-step
	Step 0. Installation

	Step 1. Setting up the environment and running a benchmark from samples

	Step 2. Rally input task format

	Step 3. Benchmarking OpenStack with existing users

	Step 4. Adding success criteria (SLA) for benchmarks

	Step 5. Rally task templates

	Step 6. Aborting load generation on success criteria failure

	Step 7. Working with multiple OpenStack clouds

	Step 8. Discovering more plugins in Rally

	Step 9. Deploying OpenStack from Rally

	User stories
	4x performance increase in Keystone inside Apache using the token creation benchmark

	Finding a Keystone bug while benchmarking 20 node HA cloud performance at creating 400 VMs

	Rally Plugins
	Rally Plugin Reference

	How plugins work

	Placement

	Example: Benchmark scenario as a plugin

	Example: Context as a plugin

	Example: SLA as a plugin

	Example: Scenario runner as a plugin

	Rally Plugins Reference

	Contribute to Rally
	Where to begin

	How to contribute

	Testing

	Rally OS Gates
	Gate jobs

	Create a custom Rally Gate job

	Example: Rally Gate job for Glance

	Plugins & Extras in Rally Gate jobs

	Request New Features
	Running Tempest using custom concurrency

	Capture Logs from services

	Check queue perfdata

	Ability to compare results between task

	Distributed load generation

	Explicitly specify existing users for scenarios

	Historical performance data

	Enhancements to installation script: --version and --uninstall

	Installation script: --pypi-mirror, --package-mirror and --venv-mirror

	Launch Specific Benchmark(s)

	Using multi scenarios to generate load

	Add support of persistence benchmark environment

	Production read cleanups

	Project Info
	Maintainers

	Useful links

	Where can I discuss and propose changes?

	Release Notes
	All release notes

	Rally v0.1.2

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Overview

Rally is a benchmarking tool that automates and unifies multi-node OpenStack deployment, cloud verification, benchmarking & profiling. It can be used as a basic tool for an OpenStack CI/CD system that would continuously improve its SLA, performance and stability.

Who Is Using Rally

Here’s a small selection of some of the many companies using Rally:

[image: _images/Rally_who_is_using.png]

Use Cases

Let’s take a look at 3 major high level Use Cases of Rally:

[image: _images/Rally-UseCases.png]
Generally, there are a few typical cases where Rally proves to be of great use:

	Automate measuring & profiling focused on how new code changes affect the OS performance;

	Using Rally profiler to detect scaling & performance issues;

	Investigate how different deployments affect the OS performance:

	Find the set of suitable OpenStack deployment architectures;

	Create deployment specifications for different loads (amount of controllers, swift nodes, etc.);

	Automate the search for hardware best suited for particular OpenStack cloud;

	Automate the production cloud specification generation:

	Determine terminal loads for basic cloud operations: VM start & stop, Block Device create/destroy & various OpenStack API methods;

	Check performance of basic cloud operations in case of different loads.

Real-life examples

To be substantive, let’s investigate a couple of real-life examples of Rally in action.

How does amqp_rpc_single_reply_queue affect performance?

Rally allowed us to reveal a quite an interesting fact about Nova. We used NovaServers.boot_and_delete benchmark scenario to see how the amqp_rpc_single_reply_queue option affects VM bootup time (it turns on a kind of fast RPC). Some time ago it was shown [https://docs.google.com/file/d/0B-droFdkDaVhVzhsN3RKRlFLODQ/edit?pli=1] that cloud performance can be boosted by setting it on, so we naturally decided to check this result with Rally. To make this test, we issued requests for booting and deleting VMs for a number of concurrent users ranging from 1 to 30 with and without the investigated option. For each group of users, a total number of 200 requests was issued. Averaged time per request is shown below:

[image: _images/Amqp_rpc_single_reply_queue.png]
So Rally has unexpectedly indicated that setting the *amqp_rpc_single_reply_queue* option apparently affects the cloud performance, but in quite an opposite way rather than it was thought before.

Performance of Nova list command

Another interesting result comes from the NovaServers.boot_and_list_server scenario, which enabled us to we launched the following benchmark with Rally:

	Benchmark environment (which we also call “Context”): 1 temporary OpenStack user.

	Benchmark scenario: boot a single VM from this user & list all VMs.

	Benchmark runner setting: repeat this procedure 200 times in a continuous way.

During the execution of this benchmark scenario, the user has more and more VMs on each iteration. Rally has shown that in this case, the performance of the VM list command in Nova is degrading much faster than one might expect:

[image: _images/Rally_VM_list.png]

Complex scenarios

In fact, the vast majority of Rally scenarios is expressed as a sequence of “atomic” actions. For example, NovaServers.snapshot is composed of 6 atomic actions:

	boot VM

	snapshot VM

	delete VM

	boot VM from snapshot

	delete VM

	delete snapshot

Rally measures not only the performance of the benchmark scenario as a whole, but also that of single atomic actions. As a result, Rally also plots the atomic actions performance data for each benchmark iteration in a quite detailed way:

[image: _images/Rally_snapshot_vm.png]

Architecture

Usually OpenStack projects are implemented “as-a-Service”, so Rally provides this approach. In addition, it implements a CLI-driven approach that does not require a daemon:

	Rally as-a-Service: Run rally as a set of daemons that present Web UI (work in progress) so 1 RaaS could be used by a whole team.

	Rally as-an-App: Rally as a just lightweight and portable CLI app (without any daemons) that makes it simple to use & develop.

The diagram below shows how this is possible:

[image: _images/Rally_Architecture.png]
The actual Rally core consists of 4 main components, listed below in the order they go into action:

	Server Providers - provide a unified interface for interaction with different virtualization technologies (LXS, Virsh etc.) and cloud suppliers (like Amazon): it does so via ssh access and in one L3 network;

	Deploy Engines - deploy some OpenStack distribution (like DevStack or FUEL) before any benchmarking procedures take place, using servers retrieved from Server Providers;

	Verification - runs Tempest (or another specific set of tests) against the deployed cloud to check that it works correctly, collects results & presents them in human readable form;

	Benchmark Engine - allows to write parameterized benchmark scenarios & run them against the cloud.

It should become fairly obvious why Rally core needs to be split to these parts if you take a look at the following diagram that visualizes a rough algorithm for starting benchmarking OpenStack at scale. Keep in mind that there might be lots of different ways to set up virtual servers, as well as to deploy OpenStack to them.

[image: _images/Rally_QA.png]

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Installation

Automated installation

The easiest way to install Rally is by executing its installation script [https://raw.githubusercontent.com/stackforge/rally/master/install_rally.sh]

wget -q -O- https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash
or using curl
curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash

The installation script will also check if all the software required
by Rally is already installed in your system; if run as root user
and some dependency is missing it will ask you if you want to install
the required packages.

By default it will install Rally in a virtualenv in ~/rally when
run as standard user, or install system wide when run as root. You can
install Rally in a venv by using the option --target:

./install_rally.sh --target /foo/bar

You can also install Rally system wide by running script as root and
without --target option:

sudo ./install_rally.sh

Run ./install_rally.sh with option --help to have a list of all
available options:

 $./install_rally.sh --help
 Usage: install_rally.sh [options]

 This script will install rally either in the system (as root) or in a virtual environment.

Options:
 -h, --help Print this help text
 -v, --verbose Verbose mode
 -s, --system Instead of creating a virtualenv, install as
 system package.
 -d, --target DIRECTORY Install Rally virtual environment into DIRECTORY.
 (Default: $HOME/rally).
 -f, --overwrite Remove target directory if it already exists.
 -y, --yes Do not ask for confirmation: assume a 'yes' reply
 to every question.
 -D, --dbtype TYPE Select the database type. TYPE can be one of
 'sqlite', 'mysql', 'postgres'.
 Default: sqlite
 --db-user USER Database user to use. Only used when --dbtype
 is either 'mysql' or 'postgres'.
 --db-password PASSWORD Password of the database user. Only used when
 --dbtype is either 'mysql' or 'postgres'.
 --db-host HOST Database host. Only used when --dbtype is
 either 'mysql' or 'postgres'
 --db-name NAME Name of the database. Only used when --dbtype is
 either 'mysql' or 'postgres'
 -p, --python EXE The python interpreter to use. Default: /usr/bin/python.

Notes: the script will check if all the software required by Rally
is already installed in your system. If this is not the case, it will
exit, suggesting you the command to issue as root in order to
install the dependencies.

You also have to set up the Rally database after the installation is complete:

rally-manage db recreate

Rally with DevStack all-in-one installation

It is also possible to install Rally with DevStack. First, clone the corresponding repositories:

git clone https://git.openstack.org/openstack-dev/devstack
git clone https://github.com/openstack/rally

Then, configure DevStack to run Rally. First, create your local.conf file:

cd devstack
cp samples/local.conf local.conf

Next, edit local.conf:
add enable_plugin rally https://github.com/openstack/rally master to [[local|localrc]] section.

Finally, run DevStack as usually:

./stack.sh

Rally & Docker

First you need to install Docker; Docker supplies installation
instructions for various OSes [https://docs.docker.com/installation/].

You can either use the official Rally Docker image, or build your own
from the Rally source. To do that, change directory to the root directory of the
Rally git repository and run:

docker build -t myrally .

If you build your own Docker image, substitute myrally for
rallyforge/rally in the commands below.

The Rally Docker image is configured to store local settings and the
database in the user’s home directory. For persistence of these data,
you may want to keep this directory outside of the container. This may
be done by the following steps:

sudo mkdir /var/lib/rally_container
sudo chown 65500 /var/lib/rally_container
docker run -it -v /var/lib/rally_container:/home/rally rallyforge/rally

Note

In order for the volume to be accessible by the Rally user
(uid: 65500) inside the container, it must be accessible by UID
65500 outside the container as well, which is why it is created
in /var/lib/rally. Creating it in your home directory is only
likely to work if your home directory has excessively open
permissions (e.g., 0755), which is not recommended.

All task samples, docs and certification tasks you could find at /opt/rally/.
Also you may want to save the last command as an alias:

echo 'alias dock_rally="docker run -it -v /var/lib/rally_container:/home/rally rallyforge/rally"' >> ~/.bashrc

After executing dock_rally, or docker run ..., you will have
bash running inside the container with Rally installed. You may do
anything with Rally, but you need to create the database first:

user@box:~/rally$ dock_rally
rally@1cc98e0b5941:~$ rally-manage db recreate
rally@1cc98e0b5941:~$ rally deployment list
There are no deployments. To create a new deployment, use:
rally deployment create
rally@1cc98e0b5941:~$

In case you have SELinux enabled and Rally fails to create the
database, try executing the following commands to put SELinux into
Permissive Mode on the host machine

sed -i 's/SELINUX=enforcing/SELINUX=permissive/' /etc/selinux/config
setenforce permissive

Rally currently has no SELinux policy, which is why it must be run in
Permissive mode for certain configurations. If you can help create an
SELinux policy for Rally, please contribute!

More about docker: https://www.docker.com/

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Rally step-by-step

In the following tutorial, we will guide you step-by-step through different use cases that might occur in Rally, starting with the easy ones and moving towards more complicated cases.

	Step 0. Installation

	Step 1. Setting up the environment and running a benchmark from samples

	Step 2. Rally input task format

	Step 3. Benchmarking OpenStack with existing users

	Step 4. Adding success criteria (SLA) for benchmarks

	Step 5. Rally task templates

	Step 6. Aborting load generation on success criteria failure

	Step 7. Working with multiple OpenStack clouds

	Step 8. Discovering more plugins in Rally

	Step 9. Deploying OpenStack from Rally

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 0. Installation

The easiest way to install Rally is by running its installation script [https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh]:

wget -q -O- https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash
or using curl:
curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash

If you execute the script as regular user, Rally will create a new
virtual environment in ~/rally/ and install in it Rally, and will
use sqlite as database backend. If you execute the script as root,
Rally will be installed system wide. For more installation options,
please refer to the installation page.

Note: Rally requires Python version 2.6, 2.7 or 3.4.

Now that you have rally installed, you are ready to start benchmarking OpenStack with it!

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 1. Setting up the environment and running a benchmark from samples

	Registering an OpenStack deployment in Rally

	Benchmarking

	Report generation

In this demo, we will show how to perform some basic operations in Rally, such as registering an OpenStack cloud, benchmarking it and generating benchmark reports.

We assume that you have a Rally installation and an already existing OpenStack deployment with Keystone available at <KEYSTONE_AUTH_URL>.

Registering an OpenStack deployment in Rally

First, you have to provide Rally with an OpenStack deployment it is going to benchmark. This should be done either through OpenRC files [http://docs.openstack.org/user-guide/content/cli_openrc.html] or through deployment configuration files [https://github.com/openstack/rally/tree/master/samples/deployments]. In case you already have an OpenRC, it is extremely simple to register a deployment with the deployment create command:

$. openrc admin admin
$ rally deployment create --fromenv --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | existing | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

Alternatively, you can put the information about your cloud credentials into a JSON configuration file (let’s call it existing.json [https://github.com/openstack/rally/blob/master/samples/deployments/existing.json]). The deployment create command has a slightly different syntax in this case:

$ rally deployment create --file=existing.json --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | existing | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

Note the last line in the output. It says that the just created deployment is now used by Rally; that means that all the benchmarking operations from now on are going to be performed on this deployment. Later we will show how to switch between different deployments.

Finally, the deployment check command enables you to verify that your current deployment is healthy and ready to be benchmarked:

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Benchmarking

Now that we have a working and registered deployment, we can start benchmarking it. The sequence of benchmarks to be launched by Rally should be specified in a benchmark task configuration file (either in JSON or in YAML format). Let’s try one of the sample benchmark tasks available in samples/tasks/scenarios [https://github.com/openstack/rally/tree/master/samples/tasks/scenarios], say, the one that boots and deletes multiple servers (samples/tasks/scenarios/nova/boot-and-delete.json):

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 }
 }
]
}

To start a benchmark task, run the task start command (you can also add the -v option to print more logging information):

$ rally task start samples/tasks/scenarios/nova/boot-and-delete.json
--
 Preparing input task
--

Input task is:
<Your task config here>

--
 Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: started
--

Benchmarking... This can take a while...

To track task status use:

 rally task status
 or
 rally task detailed

--
 Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: finished
--

test scenario NovaServers.boot_and_delete_server
args position 0
args values:
{u'args': {u'flavor': {u'name': u'm1.tiny'},
 u'force_delete': False,
 u'image': {u'name': u'^cirros.*uec$'}},
 u'context': {u'users': {u'project_domain': u'default',
 u'resource_management_workers': 30,
 u'tenants': 3,
 u'user_domain': u'default',
 u'users_per_tenant': 2}},
 u'runner': {u'concurrency': 2, u'times': 10, u'type': u'constant'}}
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.99	9.047	11.862	9.747	10.805	100.0%	10
nova.delete_server	4.427	4.574	4.772	4.677	4.725	100.0%	10
total	12.556	13.621	16.37	14.252	15.311	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 70.1310448647
Full duration: 87.545541048

HINTS:
* To plot HTML graphics with this data, run:
 rally task report 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996 --out output.html

* To get raw JSON output of task results, run:
 rally task results 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Using task: 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Note that the Rally input task above uses regular expressions to specify the image and flavor name to be used for server creation, since concrete names might differ from installation to installation. If this benchmark task fails, then the reason for that might a non-existing image/flavor specified in the task. To check what images/flavors are available in the deployment you are currently benchmarking, you might use the rally show command:

$ rally show images
+--------------------------------------+-----------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+-----------------------+-----------+
| 8dfd6098-0c26-4cb5-8e77-1ecb2db0b8ae | CentOS 6.5 (x86_64) | 344457216 |
| 2b8d119e-9461-48fc-885b-1477abe2edc5 | CirrOS 0.3.4 (x86_64) | 13287936 |
+--------------------------------------+-----------------------+-----------+

$ rally show flavors

Flavors for user `admin` in tenant `admin`:
+----+-----------+-------+----------+-----------+-----------+
| ID | Name | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
+----+-----------+-------+----------+-----------+-----------+
1	m1.tiny	1	512		1
2	m1.small	1	2048		20
3	m1.medium	2	4096		40
4	m1.large	4	8192		80
5	m1.xlarge	8	16384		160
+----+-----------+-------+----------+-----------+-----------+

Report generation

One of the most beautiful things in Rally is its task report generation mechanism. It enables you to create illustrative and comprehensive HTML reports based on the benchmarking data. To create and open at once such a report for the last task you have launched, call:

rally task report --out=report1.html --open

This will produce an HTML page with the overview of all the scenarios that you’ve included into the last benchmark task completed in Rally (in our case, this is just one scenario, and we will cover the topic of multiple scenarios in one task in the next step of our tutorial):

[image: ../_images/Report-Overview.png]
This aggregating table shows the duration of the load produced by the corresponding scenario (“Load duration”), the overall benchmark scenario execution time, including the duration of environment preparation with contexts (“Full duration”), the number of iterations of each scenario (“Iterations”), the type of the load used while running the scenario (“Runner”), the number of failed iterations (“Errors”) and finally whether the scenario has passed certain Success Criteria (“SLA”) that were set up by the user in the input configuration file (we will cover these criteria in one of the next steps).

By navigating in the left panel, you can switch to the detailed view of the benchmark results for the only scenario we included into our task, namely NovaServers.boot_and_delete_server:

[image: ../_images/Report-Scenario-Overview.png]
This page, along with the description of the success criteria used to check the outcome of this scenario, shows some more detailed information and statistics about the duration of its iterations. Now, the “Total durations” table splits the duration of our scenario into the so-called “atomic actions”: in our case, the “boot_and_delete_server” scenario consists of two actions - “boot_server” and “delete_server”. You can also see how the scenario duration changed throughout is iterations in the “Charts for the total duration” section. Similar charts, but with atomic actions detalization, will arise if you switch to the “Details” tab of this page:

[image: ../_images/Report-Scenario-Atomic.png]
Note that all the charts on the report pages are very dynamic: you can change their contents by clicking the switches above the graph and see more information about its single points by hovering the cursor over these points.

Take some time to play around with these graphs
and then move on to the next step of our tutorial.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 2. Rally input task format

	Basic input task syntax

	Multiple benchmarks in a single task

	Multiple configurations of the same scenario

Basic input task syntax

Rally comes with a really great collection of
plugins and in most
real-world cases you will use multiple plugins to test your OpenStack cloud.
Rally makes it very easy to run different test cases defined in a single task.
To do so, use the following syntax:

{
 "<ScenarioName1>": [<benchmark_config>, <benchmark_config2>, ...]
 "<ScenarioName2>": [<benchmark_config>, ...]
}

where <benchmark_config>, as before, is a dictionary:

{
 "args": { <scenario-specific arguments> },
 "runner": { <type of the runner and its specific parameters> },
 "context": { <contexts needed for this scenario> },
 "sla": { <different SLA configs> }
}

Multiple benchmarks in a single task

As an example, let’s edit our configuration file from step 1 so that it prescribes Rally to launch not only the NovaServers.boot_and_delete_server scenario, but also the KeystoneBasic.create_delete_user scenario. All we have to do is to append the configuration of the second scenario as yet another top-level key of our json file:

multiple-scenarios.json

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 }
 }
],
 "KeystoneBasic.create_delete_user": [
 {
 "args": {},
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 3
 }
 }
]
}

Now you can start this benchmark task as usually:

$ rally task start multiple-scenarios.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.06	11.354	18.594	18.54	18.567	100.0%	10
nova.delete_server	4.364	5.054	6.837	6.805	6.821	100.0%	10
total	12.572	16.408	25.396	25.374	25.385	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 84.1959171295
Full duration: 102.033041
--

...

+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
keystone.create_user	0.676	0.875	1.03	1.02	1.025	100.0%	10
keystone.delete_user	0.407	0.647	0.84	0.739	0.79	100.0%	10
total	1.082	1.522	1.757	1.724	1.741	100.0%	10
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 5.72119688988
Full duration: 10.0808410645

...

Note that the HTML reports you can generate by typing rally task report –out=report_name.html after your benchmark task has completed will get richer as your benchmark task configuration file includes more benchmark scenarios. Let’s take a look at the report overview page for a task that covers all the scenarios available in Rally:

rally task report --out=report_multiple_scenarios.html --open

[image: ../_images/Report-Multiple-Overview.png]

Multiple configurations of the same scenario

Yet another thing you can do in Rally is to launch the same benchmark scenario multiple times with different configurations. That’s why our configuration file stores a list for the key “NovaServers.boot_and_delete_server”: you can just append a different configuration of this benchmark scenario to this list to get it. Let’s say, you want to run the boot_and_delete_server scenario twice: first using the “m1.tiny” flavor and then using the “m1.small” flavor:

multiple-configurations.json

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {...},
 "context": {...}
 },
 {
 "args": {
 "flavor": {
 "name": "m1.small"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {...},
 "context": {...}
 }
]
}

That’s it! You will get again the results for each configuration separately:

$ rally task start --task=multiple-configurations.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.896	9.433	13.14	11.329	12.234	100.0%	10
nova.delete_server	4.435	4.898	6.975	5.144	6.059	100.0%	10
total	12.404	14.331	17.979	16.72	17.349	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 73.2339417934
Full duration: 91.1692159176
--

...

+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.207	8.91	9.823	9.692	9.758	100.0%	10
nova.delete_server	4.405	4.767	6.477	4.904	5.691	100.0%	10
total	12.735	13.677	16.301	14.596	15.449	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 71.029528141
Full duration: 88.0259010792
...

The HTML report will also look similar to what we have seen before:

rally task report --out=report_multiple_configuraions.html --open

[image: ../_images/Report-Multiple-Configurations-Overview.png]

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 3. Benchmarking OpenStack with existing users

	Motivation

	Registering existing users in Rally

	Running benchmark scenarios with existing users

Motivation

There are two very important reasons from the production world of why it is preferable to use some already existing users to benchmark your OpenStack cloud:

	Read-only Keystone Backends: creating temporary users for benchmark scenarios in Rally is just impossible in case of r/o Keystone backends like LDAP and AD.

	Safety: Rally can be run from an isolated group of users, and if something goes wrong, this won’t affect the rest of the cloud users.

Registering existing users in Rally

The information about existing users in your OpenStack cloud should be passed to Rally at the deployment initialization step. You have to use the ExistingCloud deployment plugin that just provides Rally with credentials of an already existing cloud. The difference from the deployment configuration we’ve seen previously is that you should set up the “users” section with the credentials of already existing users. Let’s call this deployment configuration file existing_users.json:

{
 "type": "ExistingCloud",
 "auth_url": "http://example.net:5000/v2.0/",
 "region_name": "RegionOne",
 "endpoint_type": "public",
 "admin": {
 "username": "admin",
 "password": "pa55word",
 "tenant_name": "demo"
 },
 "users": [
 {
 "username": "b1",
 "password": "1234",
 "tenant_name": "testing"
 },
 {
 "username": "b2",
 "password": "1234",
 "tenant_name": "testing"
 }
]
}

This deployment configuration requires some basic information about the OpenStack cloud like the region name, auth url. admin user credentials, and any amount of users already existing in the system. Rally will use their credentials to generate load in against this deployment as soon as we register it as usual:

$ rally deployment create --file existings_users --name our_cloud
+--------------------------------------+----------------------------+-----------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+-----------+------------------+--------+
| 1849a9bf-4b18-4fd5-89f0-ddcc56eae4c9 | 2015-03-28 02:43:27.759702 | our_cloud | deploy->finished | |
+--------------------------------------+----------------------------+-----------+------------------+--------+
Using deployment: 1849a9bf-4b18-4fd5-89f0-ddcc56eae4c9
~/.rally/openrc was updated

After that, the rally show command lists the resources for each user separately:

$ rally show images

Images for user `admin` in tenant `admin`:
+--------------------------------------+---------------------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+---------------------------------+-----------+
041cfd70-0e90-4ed6-8c0c-ad9c12a94191	cirros-0.3.4-x86_64-uec	25165824
87710f09-3625-4496-9d18-e20e34906b72	Fedora-x86_64-20-20140618-sda	209649664
b0f269be-4859-48e0-a0ca-03fb80d14602	cirros-0.3.4-x86_64-uec-ramdisk	3740163
d82eaf7a-ff63-4826-9aa7-5fa105610e01	cirros-0.3.4-x86_64-uec-kernel	4979632
+--------------------------------------+---------------------------------+-----------+

Images for user `b1` in tenant `testing`:
+--------------------------------------+---------------------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+---------------------------------+-----------+
041cfd70-0e90-4ed6-8c0c-ad9c12a94191	cirros-0.3.4-x86_64-uec	25165824
87710f09-3625-4496-9d18-e20e34906b72	Fedora-x86_64-20-20140618-sda	209649664
b0f269be-4859-48e0-a0ca-03fb80d14602	cirros-0.3.4-x86_64-uec-ramdisk	3740163
d82eaf7a-ff63-4826-9aa7-5fa105610e01	cirros-0.3.4-x86_64-uec-kernel	4979632
+--------------------------------------+---------------------------------+-----------+

Images for user `b2` in tenant `testing`:
+--------------------------------------+---------------------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+---------------------------------+-----------+
041cfd70-0e90-4ed6-8c0c-ad9c12a94191	cirros-0.3.4-x86_64-uec	25165824
87710f09-3625-4496-9d18-e20e34906b72	Fedora-x86_64-20-20140618-sda	209649664
b0f269be-4859-48e0-a0ca-03fb80d14602	cirros-0.3.4-x86_64-uec-ramdisk	3740163
d82eaf7a-ff63-4826-9aa7-5fa105610e01	cirros-0.3.4-x86_64-uec-kernel	4979632
+--------------------------------------+---------------------------------+-----------+

With this new deployment being active, Rally will use the already existing users “b1” and “b2” instead of creating the temporary ones when launching benchmark task that do not specify the “users” context.

Running benchmark scenarios with existing users

After you have registered a deployment with existing users, don’t forget to remove the “users” context from your benchmark task configuration if you want to use existing users, like in the following configuration file (boot-and-delete.json):

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 "flavor": {
 "name": "m1.tiny"
 },
 "image": {
 "name": "^cirros.*uec$"
 },
 "force_delete": false
 },
 "runner": {
 "type": "constant",
 "times": 10,
 "concurrency": 2
 },
 "context": {}
 }
]
}

When you start this task, it will use the existing users “b1” and “b2” instead of creating the temporary ones:

rally task start samples/tasks/scenarios/nova/boot-and-delete.json

It goes without saying that support of benchmarking with predefined users simplifies the usage of Rally for generating loads against production clouds.

(based on: http://boris-42.me/rally-can-generate-load-with-passed-users-now/)

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 4. Adding success criteria (SLA) for benchmarks

	SLA - Service-Level Agreement (Success Criteria)

	Checking SLA

	SLA in task report

SLA - Service-Level Agreement (Success Criteria)

Rally allows you to set success criteria (also called SLA - Service-Level Agreement) for every benchmark. Rally will automatically check them for you.

To configure the SLA, add the “sla” section to the configuration of the corresponding benchmark (the check name is a key associated with its target value). You can combine different success criteria:

{
 "NovaServers.boot_and_delete_server": [
 {
 "args": {
 ...
 },
 "runner": {
 ...
 },
 "context": {
 ...
 },
 "sla": {
 "max_seconds_per_iteration": 10,
 "failure_rate": {
 "max": 25
 }
 }
 }
]
}

Such configuration will mark the NovaServers.boot_and_delete_server benchmark scenario as not successful if either some iteration took more than 10 seconds or more than 25% iterations failed.

Checking SLA

Let us show you how Rally SLA work using a simple example based on Dummy benchmark scenarios. These scenarios actually do not perform any OpenStack-related stuff but are very useful for testing the behaviors of Rally. Let us put in a new task, test-sla.json, 2 scenarios – one that does nothing and another that just throws an exception:

{
 "Dummy.dummy": [
 {
 "args": {},
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 },
 "sla": {
 "failure_rate": {"max": 0.0}
 }
 }
],
 "Dummy.dummy_exception": [
 {
 "args": {},
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 3,
 "users_per_tenant": 2
 }
 },
 "sla": {
 "failure_rate": {"max": 0.0}
 }
 }
]
}

Note that both scenarios in these tasks have the maximum failure rate of 0% as their success criterion. We expect that the first scenario will pass this criterion while the second will fail it. Let’s start the task:

rally task start test-sla.json

After the task completes, run rally task sla_check to check the results again the success criteria you defined in the task:

$ rally task sla_check
+-----------------------+-----+--------------+--------+---+
| benchmark | pos | criterion | status | detail |
+-----------------------+-----+--------------+--------+---+
| Dummy.dummy | 0 | failure_rate | PASS | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 0.0% |
| Dummy.dummy_exception | 0 | failure_rate | FAIL | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 100.0% |
+-----------------------+-----+--------------+--------+---+

Exactly as expected.

SLA in task report

SLA checks are nicely visualized in task reports. Generate one:

rally task report --out=report_sla.html --open

Benchmark scenarios that have passed SLA have a green check on the overview page:

[image: ../_images/Report-SLA-Overview.png]
Somewhat more detailed information about SLA is displayed on the scenario pages:

[image: ../_images/Report-SLA-Scenario.png]
Success criteria present a very useful concept that enables not only to analyze the outcome of your benchmark tasks, but also to control their execution. In one of the next sections of our tutorial, we will show how to use SLA to abort the load generation before your OpenStack goes wrong.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 5. Rally task templates

	Basic template syntax

	Using the default values

	Advanced templates

Basic template syntax

A nice feature of the input task format used in Rally is that it supports the template syntax based on Jinja2 [https://pypi.python.org/pypi/Jinja2]. This turns out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this task in some way. For example, imagine your input task file (task.yaml) runs a set of Nova scenarios:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: "^cirros.*uec$"
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 NovaServers.resize_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: "^cirros.*uec$"
 to_flavor:
 name: "m1.small"
 runner:
 type: "constant"
 times: 3
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

In all the three scenarios above, the “^cirros.*uec$” image is passed to the scenario as an argument (so that these scenarios use an appropriate image while booting servers). Let’s say you want to run the same set of scenarios with the same runner/context/sla, but you want to try another image while booting server to compare the performance. The most elegant solution is then to turn the image name into a template variable:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: {{image_name}}
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 NovaServers.resize_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: {{image_name}}
 to_flavor:
 name: "m1.small"
 runner:
 type: "constant"
 times: 3
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

and then pass the argument value for {{image_name}} when starting a task with this configuration file. Rally provides you with different ways to do that:

	Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

rally task start task.yaml --task-args '{"image_name": "^cirros.*uec$"}'
rally task start task.yaml --task-args 'image_name: "^cirros.*uec$"'

	Refer to a file that specifies the argument values (JSON/YAML):

rally task start task.yaml --task-args-file args.json
rally task start task.yaml --task-args-file args.yaml

where the files containing argument values should look as follows:

args.json:

{
 "image_name": "^cirros.*uec$"
}

args.yaml:

 image_name: "^cirros.*uec$"

Passed in either way, these parameter values will be substituted by Rally when starting a task:

$ rally task start task.yaml --task-args "image_name: "^cirros.*uec$""
--
 Preparing input task
--

Input task is:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: ^cirros.*uec$
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 NovaServers.resize_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: ^cirros.*uec$
 to_flavor:
 name: "m1.small"
 runner:
 type: "constant"
 times: 3
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

--
 Task cbf7eb97-0f1d-42d3-a1f1-3cc6f45ce23f: started
--

Benchmarking... This can take a while...

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set, your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be set using the {% set ... %} clause (task.yaml):

{% set image_name = image_name or "^cirros.*uec$" %}

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: {{image_name}}
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 ...

If you don’t pass the value for {{image_name}} while starting a task, the default one will be used:

$ rally task start task.yaml
--
 Preparing input task
--

Input task is:

 NovaServers.boot_and_delete_server:
 -
 args:
 flavor:
 name: "m1.tiny"
 image:
 name: ^cirros.*uec$
 runner:
 type: "constant"
 times: 2
 concurrency: 1
 context:
 users:
 tenants: 1
 users_per_tenant: 1

 ...

Advanced templates

Rally makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in functions. This enables you to construct elegant task files capable of generating complex load on your cloud.

As an example, let us make up a task file that will create new users with increasing concurrency. The input task file (task.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

 KeystoneBasic.create_user:
 {% for i in range(2, 11, 2) %}
 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: {{i}}
 sla:
 failure_rate:
 max: 0
 {% endfor %}

In this case, you don’t need to pass any arguments via –task-args/–task-args-file, but as soon as you start this task, Rally will automatically unfold the for-loop for you:

$ rally task start task.yaml
--
 Preparing input task
--

Input task is:

 KeystoneBasic.create_user:

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 2
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 4
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 6
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 8
 sla:
 failure_rate:
 max: 0

 -
 args: {}
 runner:
 type: "constant"
 times: 10
 concurrency: 10
 sla:
 failure_rate:
 max: 0

--
 Task ea7e97e3-dd98-4a81-868a-5bb5b42b8610: started
--

Benchmarking... This can take a while...

As you can see, the Rally task template syntax is a simple but powerful mechanism that not only enables you to write elegant task configurations, but also makes them more readable for other people. When used appropriately, it can really improve the understanding of your benchmarking procedures in Rally when shared with others.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 6. Aborting load generation on success criteria failure

Benchmarking pre-production and production OpenStack clouds is not a trivial task. From the one side it’s important to reach the OpenStack cloud’s limits, from the other side the cloud shouldn’t be damaged. Rally aims to make this task as simple as possible. Since the very beginning Rally was able to generate enough load for any OpenStack cloud. Generating too big a load was the major issue for production clouds, because Rally didn’t know how to stop the load until it was too late.

With the “stop on SLA failure” feature, however, things are much better.

This feature can be easily tested in real life by running one of the most important and plain benchmark scenario called “KeystoneBasic.authenticate”. This scenario just tries to authenticate from users that were pre-created by Rally. Rally input task looks as follows (auth.yaml):

 Authenticate.keystone:
 -
 runner:
 type: "rps"
 times: 6000
 rps: 50
 context:
 users:
 tenants: 5
 users_per_tenant: 10
 sla:
 max_avg_duration: 5

In human-readable form this input task means: Create 5 tenants with 10 users in each, after that try to authenticate to Keystone 6000 times performing 50 authentications per second (running new authentication request every 20ms). Each time we are performing authentication from one of the Rally pre-created user. This task passes only if max average duration of authentication takes less than 5 seconds.

Note that this test is quite dangerous because it can DDoS Keystone. We are running more and more simultaneously authentication requests and things may go wrong if something is not set properly (like on my DevStack deployment in Small VM on my laptop).

Let’s run Rally task with an argument that prescribes Rally to stop load on SLA failure:

$ rally task start --abort-on-sla-failure auth.yaml

....
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| total | 0.108 | 8.58 | 65.97 | 19.782 | 26.125 | 100.0% | 2495 |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+

On the resulting table there are 2 interesting things:

	Average duration was 8.58 sec which is more than 5 seconds

	Rally performed only 2495 (instead of 6000) authentication requests

To understand better what has happened let’s generate HTML report:

rally task report --out auth_report.html

[image: ../_images/Report-Abort-on-SLA-task-1.png]
On the chart with durations we can observe that the duration of authentication request reaches 65 seconds at the end of the load generation. Rally stopped load at the very last moment just before the mad things happened. The reason why it runs so many attempts to authenticate is because of not enough good success criteria. We had to run a lot of iterations to make average duration bigger than 5 seconds. Let’s chose better success criteria for this task and run it one more time.

 Authenticate.keystone:
 -
 runner:
 type: "rps"
 times: 6000
 rps: 50
 context:
 users:
 tenants: 5
 users_per_tenant: 10
 sla:
 max_avg_duration: 5
 max_seconds_per_iteration: 10
 failure_rate:
 max: 0

Now our task is going to be successful if the following three conditions hold:

	maximum average duration of authentication should be less than 5 seconds

	maximum duration of any authentication should be less than 10 seconds

	no failed authentication should appear

Let’s run it!

$ rally task start --abort-on-sla-failure auth.yaml

...
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| total | 0.082 | 5.411 | 22.081 | 10.848 | 14.595 | 100.0% | 1410 |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+

[image: ../_images/Report-Abort-on-SLA-task-2.png]
This time load stopped after 1410 iterations versus 2495 which is much better. The interesting thing on this chart is that first occurrence of “> 10 second” authentication happened on 950 iteration. The reasonable question: “Why Rally run 500 more authentication requests then?”. This appears from the math: During the execution of bad authentication (10 seconds) Rally performed about 50 request/sec * 10 sec = 500 new requests as a result we run 1400 iterations instead of 950.

(based on: http://boris-42.me/rally-tricks-stop-load-before-your-openstack-goes-wrong/)

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 7. Working with multiple OpenStack clouds

Rally is an awesome tool that allows you to work with multiple clouds and can itself deploy them. We already know how to work with a single cloud. Let us now register 2 clouds in Rally: the one that we have access to and the other that we know is registered with wrong credentials.

$. openrc admin admin # openrc with correct credentials
$ rally deployment create --fromenv --name=cloud-1
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-18 00:11:14.757203 | cloud-1 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 4251b491-73b2-422a-aecb-695a94165b5e
~/.rally/openrc was updated
...

$. bad_openrc admin admin # openrc with wrong credentials
$ rally deployment create --fromenv --name=cloud-2
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-18 00:38:26.127171 | cloud-2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

Let us now list the deployments we have created:

$ rally deployment list
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-05 00:11:14.757203 | cloud-1 | deploy->finished | |
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-05 00:40:58.451435 | cloud-2 | deploy->finished | * |
+--------------------------------------+----------------------------+------------+------------------+--------+

Note that the second is marked as “active” because this is the deployment we have created most recently. This means that it will be automatically (unless its UUID or name is passed explicitly via the –deployment parameter) used by the commands that need a deployment, like rally task start ... or rally deployment check:

$ rally deployment check
Authentication Issues: wrong keystone credentials specified in your endpoint properties. (HTTP 401).

$ rally deployment check --deployment=cloud-1
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

You can also switch the active deployment using the rally deployment use command:

$ rally deployment use cloud-1
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Note the first two lines of the CLI output for the rally deployment use command. They tell you the UUID of the new active deployment and also say that the ~/.rally/openrc file was updated – this is the place where the “active” UUID is actually stored by Rally.

One last detail about managing different deployments in Rally is that the rally task list command outputs only those tasks that were run against the currently active deployment, and you have to provide the –all-deployments parameter to list all the tasks:

$ rally task list
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| c21a6ecb-57b2-43d6-bbbb-d7a827f1b420 | cloud-1 | 2015-01-05 01:00:42.099596 | 0:00:13.419226 | finished | False | |
| f6dad6ab-1a6d-450d-8981-f77062c6ef4f | cloud-1 | 2015-01-05 01:05:57.653253 | 0:00:14.160493 | finished | False | |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
$ rally task list --all-deployment
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
c21a6ecb-57b2-43d6-bbbb-d7a827f1b420	cloud-1	2015-01-05 01:00:42.099596	0:00:13.419226	finished	False	
f6dad6ab-1a6d-450d-8981-f77062c6ef4f	cloud-1	2015-01-05 01:05:57.653253	0:00:14.160493	finished	False	
6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996	cloud-2	2015-01-05 01:14:51.428958	0:00:15.042265	finished	False	
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 8. Discovering more plugins in Rally

	Plugins in the Rally repository

	CLI: rally plugin show

	CLI: rally plugin list

Plugins in the Rally repository

Rally currently comes with a great collection of plugins that use the API of
different OpenStack projects like Keystone, Nova, Cinder,
Glance and so on. The good news is that you can combine multiple plugins
in one task to test your cloud in a comprehensive way.

First, let’s see what plugins are available in Rally.
One of the ways to discover these plugins is just to inspect their
source code [https://github.com/openstack/rally/tree/master/rally/plugins/].
another is to use build-in rally plugin command.

CLI: rally plugin show

Rally plugin CLI command is much more convenient way to learn about different
plugins in Rally. This command allows to list plugins and show detailed
information about them:

$ rally plugin show create_meter_and_get_stats

NAME
 CeilometerStats.create_meter_and_get_stats
NAMESPACE
 default
MODULE
 rally.plugins.openstack.scenarios.ceilometer.stats
DESCRIPTION
 Meter is first created and then statistics is fetched for the same
 using GET /v2/meters/(meter_name)/statistics.
PARAMETERS
+--------+--+
| name | description |
+--------+--+
| kwargs | contains optional arguments to create a meter |
| | |
+--------+--+

In case if multiple found benchmarks found command list all matches elements:

$ rally plugin show NovaKeypair

Multiple plugins found:
+---+-----------+---+
| name | namespace | title |
+---+-----------+---+
NovaKeypair.boot_and_delete_server_with_keypair	default	Boot and delete server with keypair.
NovaKeypair.create_and_delete_keypair	default	Create a keypair with random name and delete keypair.
NovaKeypair.create_and_list_keypairs	default	Create a keypair with random name and list keypairs.
+---+-----------+---+

CLI: rally plugin list

This command can be used to list filtered by name list of plugins.

$ rally plugin list --name Keystone

+--+-----------+---+
| name | namespace | title |
+--+-----------+---+
Authenticate.keystone	default	Check Keystone Client.
KeystoneBasic.add_and_remove_user_role	default	Create a user role add to a user and disassociate.
KeystoneBasic.create_add_and_list_user_roles	default	Create user role, add it and list user roles for given user.
KeystoneBasic.create_and_delete_ec2credential	default	Create and delete keystone ec2-credential.
KeystoneBasic.create_and_delete_role	default	Create a user role and delete it.
KeystoneBasic.create_and_delete_service	default	Create and delete service.
KeystoneBasic.create_and_list_ec2credentials	default	Create and List all keystone ec2-credentials.
KeystoneBasic.create_and_list_services	default	Create and list services.
KeystoneBasic.create_and_list_tenants	default	Create a keystone tenant with random name and list all tenants.
KeystoneBasic.create_and_list_users	default	Create a keystone user with random name and list all users.
KeystoneBasic.create_delete_user	default	Create a keystone user with random name and then delete it.
KeystoneBasic.create_tenant	default	Create a keystone tenant with random name.
KeystoneBasic.create_tenant_with_users	default	Create a keystone tenant and several users belonging to it.
KeystoneBasic.create_update_and_delete_tenant	default	Create, update and delete tenant.
KeystoneBasic.create_user	default	Create a keystone user with random name.
KeystoneBasic.create_user_set_enabled_and_delete	default	Create a keystone user, enable or disable it, and delete it.
KeystoneBasic.create_user_update_password	default	Create user and update password for that user.
KeystoneBasic.get_entities	default	Get instance of a tenant, user, role and service by id's.
+--+-----------+---+

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Rally step-by-step

Step 9. Deploying OpenStack from Rally

Along with supporting already existing OpenStack deployments, Rally itself can deploy OpenStack automatically by using one of its deployment engines. Take a look at other deployment configuration file samples [https://github.com/openstack/rally/tree/master/samples/deployments]. For example, devstack-in-existing-servers.json is a deployment configuration file that tells Rally to deploy OpenStack with Devstack on the existing servers with given credentials:

{
 "type": "DevstackEngine",
 "provider": {
 "type": "ExistingServers",
 "credentials": [{"user": "root", "host": "10.2.0.8"}]
 }
}

You can try to deploy OpenStack in your Virtual Machine using this script. Edit the configuration file with your IP address/user name and run, as usual:

$ rally deployment create --file=samples/deployments/for_deploying_openstack_with_rally/devstack-in-existing-servers.json --name=new-devstack
+---------------------------+----------------------------+--------------+------------------+
| uuid | created_at | name | status |
+---------------------------+----------------------------+--------------+------------------+
| <Deployment UUID> | 2015-01-10 22:00:28.270941 | new-devstack | deploy->finished |
+---------------------------+----------------------------+--------------+------------------+
Using deployment : <Deployment UUID>

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

User stories

Many users of Rally were able to make interesting discoveries concerning their OpenStack clouds using our benchmarking tool. Numerous user stories presented below show how Rally has made it possible to find performance bugs and validate improvements for different OpenStack installations.

	4x performance increase in Keystone inside Apache using the token creation benchmark

	Finding a Keystone bug while benchmarking 20 node HA cloud performance at creating 400 VMs

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	User stories

4x performance increase in Keystone inside Apache using the token creation benchmark

(Contributed by Neependra Khare, Red Hat)

Below we describe how we were able to get and verify a 4x better performance of Keystone inside Apache. To do that, we ran a Keystone token creation benchmark with Rally under different load (this benchmark scenario essentially just authenticate users with keystone to get tokens).

Goal

	Get the data about performance of token creation under different load.

	Ensure that keystone with increased public_workers/admin_workers values and under Apache works better than the default setup.

Summary

	As the concurrency increases, time to authenticate the user gets up.

	
	Keystone is CPU bound process and by default only one thread of keystone-all process get started. We can increase the parallelism by:

	
	increasing public_workers/admin_workers values in keystone.conf file

	running keystone inside Apache

	We configured Keystone with 4 public_workers and ran Keystone inside Apache. In both cases we got upto 4x better performance as compared to default keystone configuration.

Setup

Server : Dell PowerEdge R610

CPU make and model : Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

CPU count: 24

RAM : 48 GB

Devstack - Commit#d65f7a2858fb047b20470e8fa62ddaede2787a85

Keystone - Commit#455d50e8ae360c2a7598a61d87d9d341e5d9d3ed

Keystone API - 2

To increase public_workers - Uncomment line with public_workers and set public_workers to 4. Then restart keystone service.

To run keystone inside Apache - Added APACHE_ENABLED_SERVICES=key in localrc file while setting up OpenStack environment with devstack.

Results

	Concurrency = 4

{'context': {'users': {'concurrent': 30,
 'tenants': 12,
 'users_per_tenant': 512}},
 'runner': {'concurrency': 4, 'times': 10000, 'type': 'constant'}}

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count
	apache enabled keystone
	public_workers

	total
	0.537
	0.998
	4.553
	1.233
	1.391
	100.0%
	10000
	N
	1

	total
	0.189
	0.296
	5.099
	0.417
	0.474
	100.0%
	10000
	N
	4

	total
	0.208
	0.299
	3.228
	0.437
	0.485
	100.0%
	10000
	Y
	NA

	Concurrency = 16

{'context': {'users': {'concurrent': 30,
 'tenants': 12,
 'users_per_tenant': 512}},
 'runner': {'concurrency': 16, 'times': 10000, 'type': 'constant'}}

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count
	apache enabled keystone
	public_workers

	total
	1.036
	3.905
	11.254
	5.258
	5.700
	100.0%
	10000
	N
	1

	total
	0.187
	1.012
	5.894
	1.61
	1.856
	100.0%
	10000
	N
	4

	total
	0.515
	0.970
	2.076
	1.113
	1.192
	100.0%
	10000
	Y
	NA

	Concurrency = 32

{'context': {'users': {'concurrent': 30,
 'tenants': 12,
 'users_per_tenant': 512}},
 'runner': {'concurrency': 32, 'times': 10000, 'type': 'constant'}}

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count
	apache enabled keystone
	public_workers

	total
	1.493
	7.752
	16.007
	10.428
	11.183
	100.0%
	10000
	N
	1

	total
	0.198
	1.967
	8.54
	3.223
	3.701
	100.0%
	10000
	N
	4

	total
	1.115
	1.986
	6.224
	2.133
	2.244
	100.0%
	10000
	Y
	NA

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	User stories

Finding a Keystone bug while benchmarking 20 node HA cloud performance at creating 400 VMs

(Contributed by Alexander Maretskiy, Mirantis)

Below we describe how we found a bug in keystone [https://bugs.launchpad.net/keystone/+bug/1360446] and achieved 2x average performance increase at booting Nova servers after fixing that bug. Our initial goal was to benchmark the booting of a significant amount of servers on a cluster (running on a custom build of Mirantis OpenStack [https://software.mirantis.com/] v5.1) and to ensure that this operation has reasonable performance and completes with no errors.

Goal

	Get data on how a cluster behaves when a huge amount of servers is started

	Get data on how good the neutron component is good in this case

Summary

	Creating 400 servers with configured networking

	Servers are being created simultaneously - 5 servers at the same time

Hardware

Having a real hardware lab with 20 nodes:

	Vendor
	SUPERMICRO SUPERSERVER

	CPU
	12 cores, Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz

	RAM
	32GB (4 x Samsung DDRIII 8GB)

	HDD
	1TB

Cluster

This cluster was created via Fuel Dashboard interface.

	Deployment
	Custom build of Mirantis OpenStack [https://software.mirantis.com/] v5.1

	OpenStack release
	Icehouse

	Operating System
	Ubuntu 12.04.4

	Mode
	High availability

	Hypervisor
	KVM

	Networking
	Neutron with GRE segmentation

	Controller nodes
	3

	Compute nodes
	17

Rally

Version

For this benchmark, we use custom rally with the following patch:

https://review.openstack.org/#/c/96300/

Deployment

Rally was deployed for cluster using ExistingCloud [https://github.com/openstack/rally/blob/master/samples/deployments/existing.json] type of deployment.

Server flavor

$ nova flavor-show ram64
+----------------------------+--------------------------------------+
| Property | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	0
extra_specs	{}
id	2e46aba0-9e7f-4572-8b0a-b12cfe7e06a1
name	ram64
os-flavor-access:is_public	True
ram	64
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+--------------------------------------+

Server image

$ nova image-show TestVM
+----------------------------+---+
| Property | Value |
+----------------------------+---+
OS-EXT-IMG-SIZE:size	13167616
created	2014-08-21T11:18:49Z
id	7a0d90cb-4372-40ef-b711-8f63b0ea9678
metadata murano_image_info	{"title": "Murano Demo", "type": "cirros.demo"}
minDisk	0
minRam	64
name	TestVM
progress	100
status	ACTIVE
updated	2014-08-21T11:18:50Z
+----------------------------+---+

Task configuration file (in JSON format):

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor": {
 "name": "ram64"
 },
 "image": {
 "name": "TestVM"
 }
 },
 "runner": {
 "type": "constant",
 "concurrency": 5,
 "times": 400
 },
 "context": {
 "neutron_network": {
 "network_ip_version": 4
 },
 "users": {
 "concurrent": 30,
 "users_per_tenant": 5,
 "tenants": 5
 },
 "quotas": {
 "neutron": {
 "subnet": -1,
 "port": -1,
 "network": -1,
 "router": -1
 }
 }
 }
 }
]
}

The only difference between first and second run is that runner.times for first time was set to 500

Results

First time - a bug was found:

Starting from 142 server, we have error from novaclient: Error <class ‘novaclient.exceptions.Unauthorized’>: Unauthorized (HTTP 401).

That is how a bug in keystone [https://bugs.launchpad.net/keystone/+bug/1360446] was found.

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count

	nova.boot_server
total
	6.507
6.507
	17.402
17.402
	100.303
100.303
	39.222
39.222
	50.134
50.134
	26.8%
26.8%
	500
500

Second run, with bugfix:

After a patch was applied (using RPC instead of neutron client in metadata agent), we got 100% success and 2x improved average perfomance:

	action
	min (sec)
	avg (sec)
	max (sec)
	90 percentile
	95 percentile
	success
	count

	nova.boot_server
total
	5.031
5.031
	8.008
8.008
	14.093
14.093
	9.616
9.616
	9.716
9.716
	100.0%
100.0%
	400
400

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Rally Plugins

Rally Plugin Reference

Rally has a plugin oriented architecture - in other words Rally team is trying
to make all places of code pluggable. Such architecture leds to the big amount
of plugins. Rally Plugins Reference page contains a
full list with detailed descriptions of all official Rally plugins.

How plugins work

Rally provides an opportunity to create and use a custom benchmark
scenario, runner or context as a plugin:

[image: _images/Rally-Plugins.png]

Placement

Plugins can be quickly written and used, with no need to contribute
them to the actual Rally code. Just place a python module with your
plugin class into the /opt/rally/plugins or ~/.rally/plugins
directory (or its subdirectories), and it will be
autoloaded. Additional paths can be specified with the
--plugin-paths argument, or with the RALLY_PLUGIN_PATHS
environment variable, both of which accept comma-delimited
lists. Both --plugin-paths and RALLY_PLUGIN_PATHS can list
either plugin module files, or directories containing plugins. For
instance, both of these are valid:

rally --plugin-paths /rally/plugins ...
rally --plugin-paths /rally/plugins/foo.py,/rally/plugins/bar.py ...

You can also use a script unpack_plugins_samples.sh from
samples/plugins which will automatically create the
~/.rally/plugins directory.

Example: Benchmark scenario as a plugin

Let’s create as a plugin a simple scenario which list flavors.

Creation

Inherit a class for your plugin from the base Scenario class and implement a scenario method inside it as usual. In our scenario, let us first list flavors as an ordinary user, and then repeat the same using admin clients:

from rally.task import atomic
from rally.task import scenario

class ScenarioPlugin(scenario.Scenario):
 """Sample plugin which lists flavors."""

 @atomic.action_timer("list_flavors")
 def _list_flavors(self):
 """Sample of usage clients - list flavors

 You can use self.context, self.admin_clients and self.clients which are
 initialized on scenario instance creation"""
 self.clients("nova").flavors.list()

 @atomic.action_timer("list_flavors_as_admin")
 def _list_flavors_as_admin(self):
 """The same with admin clients"""
 self.admin_clients("nova").flavors.list()

 @scenario.configure()
 def list_flavors(self):
 """List flavors."""
 self._list_flavors()
 self._list_flavors_as_admin()

Usage

You can refer to your plugin scenario in the benchmark task configuration files just in the same way as to any other scenarios:

{
 "ScenarioPlugin.list_flavors": [
 {
 "runner": {
 "type": "serial",
 "times": 5,
 },
 "context": {
 "create_flavor": {
 "ram": 512,
 }
 }
 }
]
}

This configuration file uses the “create_flavor” context which we’ll create as a plugin below.

Example: Context as a plugin

Let’s create as a plugin a simple context which adds a flavor to the environment before the benchmark task starts and deletes it after it finishes.

Creation

Inherit a class for your plugin from the base Context class. Then, implement the Context API: the setup() method that creates a flavor and the cleanup() method that deletes it.

from rally.task import context
from rally.common import logging
from rally import consts
from rally import osclients

LOG = logging.getLogger(__name__)

@context.configure(name="create_flavor", order=1000)
class CreateFlavorContext(context.Context):
 """This sample create flavor with specified options before task starts and
 delete it after task completion.

 To create your own context plugin, inherit it from
 rally.task.context.Context
 """

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "additionalProperties": False,
 "properties": {
 "flavor_name": {
 "type": "string",
 },
 "ram": {
 "type": "integer",
 "minimum": 1
 },
 "vcpus": {
 "type": "integer",
 "minimum": 1
 },
 "disk": {
 "type": "integer",
 "minimum": 1
 }
 }
 }

 def setup(self):
 """This method is called before the task start"""
 try:
 # use rally.osclients to get necessary client instance
 nova = osclients.Clients(self.context["admin"]["credential"]).nova()
 # and than do what you need with this client
 self.context["flavor"] = nova.flavors.create(
 # context settings are stored in self.config
 name=self.config.get("flavor_name", "rally_test_flavor"),
 ram=self.config.get("ram", 1),
 vcpus=self.config.get("vcpus", 1),
 disk=self.config.get("disk", 1)).to_dict()
 LOG.debug("Flavor with id '%s'" % self.context["flavor"]["id"])
 except Exception as e:
 msg = "Can't create flavor: %s" % e.message
 if logging.is_debug():
 LOG.exception(msg)
 else:
 LOG.warning(msg)

 def cleanup(self):
 """This method is called after the task finish"""
 try:
 nova = osclients.Clients(self.context["admin"]["credential"]).nova()
 nova.flavors.delete(self.context["flavor"]["id"])
 LOG.debug("Flavor '%s' deleted" % self.context["flavor"]["id"])
 except Exception as e:
 msg = "Can't delete flavor: %s" % e.message
 if logging.is_debug():
 LOG.exception(msg)
 else:
 LOG.warning(msg)

Usage

You can refer to your plugin context in the benchmark task configuration files just in the same way as to any other contexts:

{
 "Dummy.dummy": [
 {
 "args": {
 "sleep": 0.01
 },
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 1
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 1
 },
 "create_flavor": {
 "ram": 1024
 }
 }
 }
]
}

Example: SLA as a plugin

Let’s create as a plugin an SLA (success criterion) which checks whether the range of the observed performance measurements does not exceed the allowed maximum value.

Creation

Inherit a class for your plugin from the base SLA class and implement its API (the add_iteration(iteration), the details() method):

from rally.task import sla
from rally.common.i18n import _

@sla.configure(name="max_duration_range")
class MaxDurationRange(sla.SLA):
 """Maximum allowed duration range in seconds."""

 CONFIG_SCHEMA = {
 "type": "number",
 "minimum": 0.0,
 }

 def __init__(self, criterion_value):
 super(MaxDurationRange, self).__init__(criterion_value)
 self._min = 0
 self._max = 0

 def add_iteration(self, iteration):
 # Skipping failed iterations (that raised exceptions)
 if iteration.get("error"):
 return self.success # This field is defined in base class

 # Updating _min and _max values
 self._max = max(self._max, iteration["duration"])
 self._min = min(self._min, iteration["duration"])

 # Updating successfulness based on new max and min values
 self.success = self._max - self._min <= self.criterion_value
 return self.success

 def details(self):
 return (_("%s - Maximum allowed duration range: %.2f%% <= %.2f%%") %
 (self.status(), self._max - self._min, self.criterion_value))

Usage

You can refer to your SLA in the benchmark task configuration files just in the same way as to any other SLA:

{
 "Dummy.dummy": [
 {
 "args": {
 "sleep": 0.01
 },
 "runner": {
 "type": "constant",
 "times": 5,
 "concurrency": 1
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 1
 }
 },
 "sla": {
 "max_duration_range": 2.5
 }
 }
]
}

Example: Scenario runner as a plugin

Let’s create as a plugin a scenario runner which runs a given benchmark scenario for a random number of times (chosen at random from a given range).

Creation

Inherit a class for your plugin from the base ScenarioRunner class and implement its API (the _run_scenario() method):

import random

from rally.task import runner
from rally import consts

@runner.configure(name="random_times")
class RandomTimesScenarioRunner(runner.ScenarioRunner):
 """Sample of scenario runner plugin.

 Run scenario random number of times, which is chosen between min_times and
 max_times.
 """

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "properties": {
 "type": {
 "type": "string"
 },
 "min_times": {
 "type": "integer",
 "minimum": 1
 },
 "max_times": {
 "type": "integer",
 "minimum": 1
 }
 },
 "additionalProperties": True
 }

 def _run_scenario(self, cls, method_name, context, args):
 # runners settings are stored in self.config
 min_times = self.config.get('min_times', 1)
 max_times = self.config.get('max_times', 1)

 for i in range(random.randrange(min_times, max_times)):
 run_args = (i, cls, method_name,
 runner._get_scenario_context(context), args)
 result = runner._run_scenario_once(run_args)
 # use self.send_result for result of each iteration
 self._send_result(result)

Usage

You can refer to your scenario runner in the benchmark task configuration files just in the same way as to any other runners. Don’t forget to put you runner-specific parameters to the configuration as well (“min_times” and “max_times” in our example):

{
 "Dummy.dummy": [
 {
 "runner": {
 "type": "random_times",
 "min_times": 10,
 "max_times": 20,
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 1
 }
 }
 }
]
}

Different plugin samples are available here [https://github.com/openstack/rally/tree/master/samples/plugins].

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Rally Plugins Reference

Scenario Runners [task]

constant [scenario runner]

Creates constant load executing a scenario a specified number of times.

This runner will place a constant load on the cloud under test by
executing each scenario iteration without pausing between iterations
up to the number of times specified in the scenario config.

The concurrency parameter of the scenario config controls the
number of concurrent scenarios which execute during a single
iteration in order to simulate the activities of multiple users
placing load on the cloud under test.

MODULE:
rally.plugins.common.runners.constant

constant_for_duration [scenario runner]

Creates constant load executing a scenario for an interval of time.

This runner will place a constant load on the cloud under test by
executing each scenario iteration without pausing between iterations
until a specified interval of time has elapsed.

The concurrency parameter of the scenario config controls the
number of concurrent scenarios which execute during a single
iteration in order to simulate the activities of multiple users
placing load on the cloud under test.

MODULE:
rally.plugins.common.runners.constant

rps [scenario runner]

Scenario runner that does the job with specified frequency.

Every single benchmark scenario iteration is executed with specified
frequency (runs per second) in a pool of processes. The scenario will be
launched for a fixed number of times in total (specified in the config).

An example of a rps scenario is booting 1 VM per second. This
execution type is thus very helpful in understanding the maximal load that
a certain cloud can handle.

MODULE:
rally.plugins.common.runners.rps

serial [scenario runner]

Scenario runner that executes benchmark scenarios serially.

Unlike scenario runners that execute in parallel, the serial scenario
runner executes scenarios one-by-one in the same python interpreter process
as Rally. This allows you to benchmark your scenario without introducing
any concurrent operations as well as interactively debug the scenario
from the same command that you use to start Rally.

MODULE:
rally.plugins.common.runners.serial

SLAs [task]

outliers [SLA]

Limit the number of outliers (iterations that take too much time).

The outliers are detected automatically using the computation of the mean
and standard deviation (std) of the data.

MODULE:
rally.plugins.common.sla.outliers

max_seconds_per_iteration [SLA]

Maximum time for one iteration in seconds.

MODULE:
rally.plugins.common.sla.iteration_time

failure_rate [SLA]

Failure rate minimum and maximum in percents.

MODULE:
rally.plugins.common.sla.failure_rate

max_avg_duration [SLA]

Maximum average duration of one iteration in seconds.

MODULE:
rally.plugins.common.sla.max_average_duration

Contexts [task]

flavors [context]

Context creates a list of flavors.

MODULE:
rally.plugins.openstack.context.nova.flavors

fuel_environments [context]

Context for generating Fuel environments.

MODULE:
rally.plugins.openstack.context.fuel

ec2_servers [context]

Context class for adding temporary servers for benchmarks.

Servers are added for each tenant.

MODULE:
rally.plugins.openstack.context.ec2.servers

volumes [context]

Context class for adding volumes to each user for benchmarks.

MODULE:
rally.plugins.openstack.context.cinder.volumes

murano_packages [context]

Context class for uploading applications for murano.

MODULE:
rally.plugins.openstack.context.murano.murano_packages

swift_objects [context]

MODULE:
rally.plugins.openstack.context.swift.objects

stacks [context]

Context class for create temporary stacks with resources.

Stack generator allows to generate arbitrary number of stacks for
each tenant before test scenarios. In addition, it allows to define
number of resources (namely OS::Heat::RandomString) that will be created
inside each stack. After test execution the stacks will be
automatically removed from heat.

MODULE:
rally.plugins.openstack.context.heat.stacks

sahara_image [context]

Context class for adding and tagging Sahara images.

MODULE:
rally.plugins.openstack.context.sahara.sahara_image

sahara_input_data_sources [context]

Context class for setting up Input Data Sources for an EDP job.

MODULE:
rally.plugins.openstack.context.sahara.sahara_input_data_sources

sahara_output_data_sources [context]

Context class for setting up Output Data Sources for an EDP job.

MODULE:
rally.plugins.openstack.context.sahara.sahara_output_data_sources

sahara_cluster [context]

Context class for setting up the Cluster an EDP job.

MODULE:
rally.plugins.openstack.context.sahara.sahara_cluster

sahara_job_binaries [context]

Context class for setting up Job Binaries for an EDP job.

MODULE:
rally.plugins.openstack.context.sahara.sahara_job_binaries

zones [context]

Context to add `zones_per_tenant` zones for each tenant.

MODULE:
rally.plugins.openstack.context.designate.zones

admin_cleanup [context]

Context class for admin resources cleanup.

MODULE:
rally.plugins.openstack.context.cleanup.context

cleanup [context]

Context class for user resources cleanup.

MODULE:
rally.plugins.openstack.context.cleanup.context

allow_ssh [context]

Sets up security groups for all users to access VM via SSH.

MODULE:
rally.plugins.openstack.context.network.allow_ssh

existing_network [context]

This context supports using existing networks in Rally.

This context should be used on a deployment with existing users.

MODULE:
rally.plugins.openstack.context.network.existing_network

network [context]

MODULE:
rally.plugins.openstack.context.network.networks

quotas [context]

Context class for updating benchmarks' tenants quotas.

MODULE:
rally.plugins.openstack.context.quotas.quotas

custom_image [context]

Base class for the contexts providing customized image with.

Every context class for the specific customization must implement
the method `_customize_image` that is able to connect to the server
using SSH and e.g. install applications inside it.

This is used e.g. to install the benchmark application using SSH
access.

This base context class provides a way to prepare an image with
custom preinstalled applications. Basically, this code boots a VM, calls
the `_customize_image` and then snapshots the VM disk, removing the VM
afterwards. The image UUID is stored in the user["custom_image"]["id"]
and can be used afterwards by scenario.

MODULE:
rally.plugins.openstack.context.vm.custom_image

image_command_customizer [context]

Context class for generating image customized by a command execution.

Run a command specified by configuration to prepare image.

Use this script e.g. to download and install something.

MODULE:
rally.plugins.openstack.context.vm.image_command_customizer

images [context]

Context class for adding images to each user for benchmarks.

MODULE:
rally.plugins.openstack.context.glance.images

roles [context]

Context class for adding temporary roles for benchmarks.

MODULE:
rally.plugins.openstack.context.keystone.roles

api_versions [context]

Context for specifying OpenStack clients versions and service types.

MODULE:
rally.plugins.openstack.context.keystone.api_versions

users [context]

Context class for generating temporary users/tenants for benchmarks.

MODULE:
rally.plugins.openstack.context.keystone.users

existing_users [context]

This context supports using existing users in Rally.

It uses information about deployment to properly
initialize context["users"] and context["tenants"]

So there won't be big difference between usage of "users" and
"existing_users" context.

MODULE:
rally.plugins.openstack.context.keystone.existing_users

keypair [context]

MODULE:
rally.plugins.openstack.context.nova.keypairs

servers [context]

Context class for adding temporary servers for benchmarks.

Servers are added for each tenant.

MODULE:
rally.plugins.openstack.context.nova.servers

tempest [context]

MODULE:
rally.plugins.openstack.context.not_for_production.tempest

lbaas [context]

MODULE:
rally.plugins.openstack.context.neutron.lbaas

ceilometer [context]

Context for creating samples and collecting resources for benchmarks.

MODULE:
rally.plugins.openstack.context.ceilometer.samples

manila_share_networks [context]

This context creates resources specific for Manila project.

MODULE:
rally.plugins.openstack.context.manila.manila_share_networks

dummy_context [context]

Dummy context.

MODULE:
rally.plugins.common.context.dummy

Scenarios [task]

EC2Servers.list_servers [scenario]

List all servers.

This simple scenario tests the EC2 API list function by listing
all the servers.

MODULE:
rally.plugins.openstack.scenarios.ec2.servers

EC2Servers.boot_server [scenario]

Boot a server.

Assumes that cleanup is done elsewhere.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* kwargs: optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.ec2.servers

IronicNodes.create_and_list_node [scenario]

Create and list nodes.

PARAMETERS:
* associated: Optional. Either a Boolean or a string
representation of a Boolean that indicates whether
to return a list of associated (True or "True") or
unassociated (False or "False") nodes.
* maintenance: Optional. Either a Boolean or a string
representation of a Boolean that indicates whether
to return nodes in maintenance mode (True or
"True"), or not in maintenance mode (False or
"False").
* marker: Optional, the UUID of a node, eg the last
node from a previous result set. Return
the next result set.
* limit: The maximum number of results to return per
request, if:
1) limit > 0, the maximum number of nodes to return.
2) limit == 0, return the entire list of nodes.
3) limit param is NOT specified (None), the number of items
returned respect the maximum imposed by the Ironic API
(see Ironic's api.max_limit option).
* detail: Optional, boolean whether to return detailed
information about nodes.
* sort_key: Optional, field used for sorting.
* sort_dir: Optional, direction of sorting, either 'asc' (the
default) or 'desc'.
* kwargs: Optional additional arguments for node creation

MODULE:
rally.plugins.openstack.scenarios.ironic.nodes

IronicNodes.create_and_delete_node [scenario]

Create and delete node.

PARAMETERS:
* kwargs: Optional additional arguments for node creation

MODULE:
rally.plugins.openstack.scenarios.ironic.nodes

CinderVolumes.create_and_list_volume [scenario]

Create a volume and list all volumes.

Measure the "cinder volume-list" command performance.

If you have only 1 user in your context, you will
add 1 volume on every iteration. So you will have more
and more volumes and will be able to measure the
performance of the "cinder volume-list" command depending on
the number of images owned by users.

PARAMETERS:
* size: volume size (integer, in GB) or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
* detailed: determines whether the volume listing should contain
detailed information about all of them
* image: image to be used to create volume
* kwargs: optional args to create a volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.list_volumes [scenario]

List all volumes.

This simple scenario tests the cinder list command by listing
all the volumes.

PARAMETERS:
* detailed: True if detailed information about volumes
should be listed

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_update_volume [scenario]

Create a volume and update its name and description.

PARAMETERS:
* size: volume size (integer, in GB)
* image: image to be used to create volume
* create_volume_kwargs: dict, to be used to create volume
* update_volume_kwargs: dict, to be used to update volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_delete_volume [scenario]

Create and then delete a volume.

Good for testing a maximal bandwidth of cloud. Optional 'min_sleep'
and 'max_sleep' parameters allow the scenario to simulate a pause
between volume creation and deletion (of random duration from
[min_sleep, max_sleep]).

PARAMETERS:
* size: volume size (integer, in GB) or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
* image: image to be used to create volume
* min_sleep: minimum sleep time between volume creation and
deletion (in seconds)
* max_sleep: maximum sleep time between volume creation and
deletion (in seconds)
* kwargs: optional args to create a volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_volume [scenario]

Create a volume.

Good test to check how influence amount of active volumes on
performance of creating new.

PARAMETERS:
* size: volume size (integer, in GB) or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
* image: image to be used to create volume
* kwargs: optional args to create a volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.modify_volume_metadata [scenario]

Modify a volume's metadata.

This requires a volume to be created with the volumes
context. Additionally, ``sets * set_size`` must be greater
than or equal to ``deletes * delete_size``.

PARAMETERS:
* sets: how many set_metadata operations to perform
* set_size: number of metadata keys to set in each
set_metadata operation
* deletes: how many delete_metadata operations to perform
* delete_size: number of metadata keys to delete in each
delete_metadata operation

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_extend_volume [scenario]

Create and extend a volume and then delete it.

PARAMETERS:
* size: volume size (in GB) or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
* new_size: volume new size (in GB) or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
to extend.
Notice: should be bigger volume size
* min_sleep: minimum sleep time between volume extension and
deletion (in seconds)
* max_sleep: maximum sleep time between volume extension and
deletion (in seconds)
* kwargs: optional args to extend the volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_from_volume_and_delete_volume [scenario]

Create volume from volume and then delete it.

Scenario for testing volume clone.Optional 'min_sleep' and 'max_sleep'
parameters allow the scenario to simulate a pause between volume
creation and deletion (of random duration from [min_sleep, max_sleep]).

PARAMETERS:
* size: volume size (in GB), or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
Should be equal or bigger source volume size
* min_sleep: minimum sleep time between volume creation and
deletion (in seconds)
* max_sleep: maximum sleep time between volume creation and
deletion (in seconds)
* kwargs: optional args to create a volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_delete_snapshot [scenario]

Create and then delete a volume-snapshot.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between snapshot creation and deletion
(of random duration from [min_sleep, max_sleep]).

PARAMETERS:
* force: when set to True, allows snapshot of a volume when
the volume is attached to an instance
* min_sleep: minimum sleep time between snapshot creation and
deletion (in seconds)
* max_sleep: maximum sleep time between snapshot creation and
deletion (in seconds)
* kwargs: optional args to create a snapshot

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_attach_volume [scenario]

Create a VM and attach a volume to it.

Simple test to create a VM and attach a volume, then
detach the volume and delete volume/VM.

PARAMETERS:
* size: volume size (integer, in GB) or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
* image: Glance image name to use for the VM
* flavor: VM flavor name
* kwargs: optional arguments for VM creation

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_snapshot_and_attach_volume [scenario]

Create volume, snapshot and attach/detach volume.

This scenario is based on the standalone qaStressTest.py
(https://github.com/WaltHP/cinder-stress).

PARAMETERS:
* volume_type: Whether or not to specify volume type when creating
volumes.
* size: Volume size - dictionary, contains two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
default values: {"min": 1, "max": 5}
* kwargs: Optional parameters used during volume
snapshot creation.

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_nested_snapshots_and_attach_volume [scenario]

Create a volume from snapshot and attach/detach the volume

This scenario create volume, create it's snapshot, attach volume,
then create new volume from existing snapshot and so on,
with defined nested level, after all detach and delete them.
volume->snapshot->volume->snapshot->volume ...

PARAMETERS:
* size: Volume size - dictionary, contains two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
default values: {"min": 1, "max": 5}
* nested_level: Nested level - dictionary or int, dictionary
contains two values:
min - minimum number of volumes will be created
from snapshot;
max - maximum number of volumes will be created
from snapshot.
due to its deprecated would be taken min value.
int, means the exact nested level.
default value: 1.
* kwargs: Optional parameters used during volume
snapshot creation.

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_list_snapshots [scenario]

Create and then list a volume-snapshot.

PARAMETERS:
* force: when set to True, allows snapshot of a volume when
the volume is attached to an instance
* detailed: True if detailed information about snapshots
should be listed
* kwargs: optional args to create a snapshot

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_upload_volume_to_image [scenario]

Create and upload a volume to image.

PARAMETERS:
* size: volume size (integers, in GB), or
dictionary, must contain two values:
min - minimum size volumes will be created as;
max - maximum size volumes will be created as.
* force: when set to True volume that is attached to an instance
could be uploaded to image
* container_format: image container format
* disk_format: disk format for image
* do_delete: deletes image and volume after uploading if True
* kwargs: optional args to create a volume

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_volume_backup [scenario]

Create a volume backup.

PARAMETERS:
* size: volume size in GB
* do_delete: if True, a volume and a volume backup will
be deleted after creation.
* create_volume_kwargs: optional args to create a volume
* create_backup_kwargs: optional args to create a volume backup

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_restore_volume_backup [scenario]

Restore volume backup.

PARAMETERS:
* size: volume size in GB
* do_delete: if True, the volume and the volume backup will
be deleted after creation.
* create_volume_kwargs: optional args to create a volume
* create_backup_kwargs: optional args to create a volume backup

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

CinderVolumes.create_and_list_volume_backups [scenario]

Create and then list a volume backup.

PARAMETERS:
* size: volume size in GB
* detailed: True if detailed information about backup
should be listed
* do_delete: if True, a volume backup will be deleted
* create_volume_kwargs: optional args to create a volume
* create_backup_kwargs: optional args to create a volume backup

MODULE:
rally.plugins.openstack.scenarios.cinder.volumes

MuranoPackages.import_and_list_packages [scenario]

Import Murano package and get list of packages.

Measure the "murano import-package" and "murano package-list" commands
performance.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared) and gets list of imported packages.

PARAMETERS:
* package: path to zip archive that represents Murano
application package or absolute path to folder with
package components
* include_disabled: specifies whether the disabled packages will
be included in a the result or not.
Default value is False.

MODULE:
rally.plugins.openstack.scenarios.murano.packages

MuranoPackages.import_and_delete_package [scenario]

Import Murano package and then delete it.

Measure the "murano import-package" and "murano package-delete"
commands performance.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared) and deletes it.

PARAMETERS:
* package: path to zip archive that represents Murano
application package or absolute path to folder with
package components

MODULE:
rally.plugins.openstack.scenarios.murano.packages

MuranoPackages.package_lifecycle [scenario]

Import Murano package, modify it and then delete it.

Measure the Murano import, update and delete package
commands performance.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared), modifies it (using data from
"body") and deletes.

PARAMETERS:
* package: path to zip archive that represents Murano
application package or absolute path to folder with
package components
* body: dict object that defines what package property will be
updated, e.g {"tags": ["tag"]} or {"enabled": "true"}
* operation: string object that defines the way of how package
property will be updated, allowed operations are
"add", "replace" or "delete".
Default value is "replace".

MODULE:
rally.plugins.openstack.scenarios.murano.packages

MuranoPackages.import_and_filter_applications [scenario]

Import Murano package and then filter packages by some criteria.

Measure the performance of package import and package
filtering commands.
It imports Murano package from "package" (if it is not a zip archive
then zip archive will be prepared) and filters packages by some
criteria.

PARAMETERS:
* package: path to zip archive that represents Murano
application package or absolute path to folder with
package components
* filter_query: dict that contains filter criteria, lately it
will be passed as **kwargs to filter method
e.g. {"category": "Web"}

MODULE:
rally.plugins.openstack.scenarios.murano.packages

MuranoEnvironments.list_environments [scenario]

List the murano environments.

Run murano environment-list for listing all environments.

MODULE:
rally.plugins.openstack.scenarios.murano.environments

MuranoEnvironments.create_and_delete_environment [scenario]

Create environment, session and delete environment.

MODULE:
rally.plugins.openstack.scenarios.murano.environments

MuranoEnvironments.create_and_deploy_environment [scenario]

Create environment, session and deploy environment.

Create environment, create session, add app to environment
packages_per_env times, send environment to deploy.

PARAMETERS:
* packages_per_env: number of packages per environment

MODULE:
rally.plugins.openstack.scenarios.murano.environments

SwiftObjects.create_container_and_object_then_list_objects [scenario]

Create container and objects then list all objects.

PARAMETERS:
* objects_per_container: int, number of objects to upload
* object_size: int, temporary local object size
* kwargs: dict, optional parameters to create container

MODULE:
rally.plugins.openstack.scenarios.swift.objects

SwiftObjects.create_container_and_object_then_delete_all [scenario]

Create container and objects then delete everything created.

PARAMETERS:
* objects_per_container: int, number of objects to upload
* object_size: int, temporary local object size
* kwargs: dict, optional parameters to create container

MODULE:
rally.plugins.openstack.scenarios.swift.objects

SwiftObjects.create_container_and_object_then_download_object [scenario]

Create container and objects then download all objects.

PARAMETERS:
* objects_per_container: int, number of objects to upload
* object_size: int, temporary local object size
* kwargs: dict, optional parameters to create container

MODULE:
rally.plugins.openstack.scenarios.swift.objects

SwiftObjects.list_objects_in_containers [scenario]

List objects in all containers.

MODULE:
rally.plugins.openstack.scenarios.swift.objects

SwiftObjects.list_and_download_objects_in_containers [scenario]

List and download objects in all containers.

MODULE:
rally.plugins.openstack.scenarios.swift.objects

HeatStacks.create_and_list_stack [scenario]

Create a stack and then list all stacks.

Measure the "heat stack-create" and "heat stack-list" commands
performance.

PARAMETERS:
* template_path: path to stack template file
* parameters: parameters to use in heat template
* files: files used in template
* environment: stack environment definition

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.list_stacks_and_resources [scenario]

List all resources from tenant stacks.

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.create_and_delete_stack [scenario]

Create and then delete a stack.

Measure the "heat stack-create" and "heat stack-delete" commands
performance.

PARAMETERS:
* template_path: path to stack template file
* parameters: parameters to use in heat template
* files: files used in template
* environment: stack environment definition

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.create_check_delete_stack [scenario]

Create, check and delete a stack.

Measure the performance of the following commands:
- heat stack-create
- heat action-check
- heat stack-delete

PARAMETERS:
* template_path: path to stack template file
* parameters: parameters to use in heat template
* files: files used in template
* environment: stack environment definition

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.create_update_delete_stack [scenario]

Create, update and then delete a stack.

Measure the "heat stack-create", "heat stack-update"
and "heat stack-delete" commands performance.

PARAMETERS:
* template_path: path to stack template file
* updated_template_path: path to updated stack template file
* parameters: parameters to use in heat template
* updated_parameters: parameters to use in updated heat template
If not specified then parameters will be
used instead
* files: files used in template
* updated_files: files used in updated template. If not specified
files value will be used instead
* environment: stack environment definition
* updated_environment: environment definition for updated stack

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.create_stack_and_scale [scenario]

Create an autoscaling stack and invoke a scaling policy.

Measure the performance of autoscaling webhooks.

PARAMETERS:
* template_path: path to template file that includes an
OS::Heat::AutoScalingGroup resource
* output_key: the stack output key that corresponds to
the scaling webhook
* delta: the number of instances the stack is expected to
change by.
* parameters: parameters to use in heat template
* files: files used in template (dict of file name to
file path)
* environment: stack environment definition (dict)

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.create_suspend_resume_delete_stack [scenario]

Create, suspend-resume and then delete a stack.

Measure performance of the following commands:
heat stack-create
heat action-suspend
heat action-resume
heat stack-delete

PARAMETERS:
* template_path: path to stack template file
* parameters: parameters to use in heat template
* files: files used in template
* environment: stack environment definition

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.list_stacks_and_events [scenario]

List events from tenant stacks.

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

HeatStacks.create_snapshot_restore_delete_stack [scenario]

Create, snapshot-restore and then delete a stack.

Measure performance of the following commands:
heat stack-create
heat stack-snapshot
heat stack-restore
heat stack-delete

PARAMETERS:
* template_path: path to stack template file
* parameters: parameters to use in heat template
* files: files used in template
* environment: stack environment definition

MODULE:
rally.plugins.openstack.scenarios.heat.stacks

SaharaNodeGroupTemplates.create_and_list_node_group_templates [scenario]

Create and list Sahara Node Group Templates.

This scenario creates two Node Group Templates with different set of
node processes. The master Node Group Template contains Hadoop's
management processes. The worker Node Group Template contains
Hadoop's worker processes.

By default the templates are created for the vanilla Hadoop
provisioning plugin using the version 1.2.1

After the templates are created the list operation is called.

PARAMETERS:
* flavor: Nova flavor that will be for nodes in the
created node groups
* plugin_name: name of a provisioning plugin
* hadoop_version: version of Hadoop distribution supported by
the specified plugin.

MODULE:
rally.plugins.openstack.scenarios.sahara.node_group_templates

SaharaNodeGroupTemplates.create_delete_node_group_templates [scenario]

Create and delete Sahara Node Group Templates.

This scenario creates and deletes two most common types of
Node Group Templates.

By default the templates are created for the vanilla Hadoop
provisioning plugin using the version 1.2.1

PARAMETERS:
* flavor: Nova flavor that will be for nodes in the
created node groups
* plugin_name: name of a provisioning plugin
* hadoop_version: version of Hadoop distribution supported by
the specified plugin.

MODULE:
rally.plugins.openstack.scenarios.sahara.node_group_templates

SaharaClusters.create_and_delete_cluster [scenario]

Launch and delete a Sahara Cluster.

This scenario launches a Hadoop cluster, waits until it becomes
'Active' and deletes it.

PARAMETERS:
* flavor: Nova flavor that will be for nodes in the
created node groups
* workers_count: number of worker instances in a cluster
* plugin_name: name of a provisioning plugin
* hadoop_version: version of Hadoop distribution supported by
the specified plugin.
* floating_ip_pool: floating ip pool name from which Floating
IPs will be allocated. Sahara will determine
automatically how to treat this depending on
its own configurations. Defaults to None
because in some cases Sahara may work w/o
Floating IPs.
* volumes_per_node: number of Cinder volumes that will be
attached to every cluster node
* volumes_size: size of each Cinder volume in GB
* auto_security_group: boolean value. If set to True Sahara will
create a Security Group for each Node Group
in the Cluster automatically.
* security_groups: list of security groups that will be used
while creating VMs. If auto_security_group
is set to True, this list can be left empty.
* node_configs: config dict that will be passed to each Node
Group
* cluster_configs: config dict that will be passed to the
Cluster
* enable_anti_affinity: If set to true the vms will be scheduled
one per compute node.
* enable_proxy: Use Master Node of a Cluster as a Proxy node and
do not assign floating ips to workers.

MODULE:
rally.plugins.openstack.scenarios.sahara.clusters

SaharaClusters.create_scale_delete_cluster [scenario]

Launch, scale and delete a Sahara Cluster.

This scenario launches a Hadoop cluster, waits until it becomes
'Active'. Then a series of scale operations is applied. The scaling
happens according to numbers listed in

PARAMETERS:
* flavor: Nova flavor that will be for nodes in the
created node groups
* workers_count: number of worker instances in a cluster
* plugin_name: name of a provisioning plugin
* hadoop_version: version of Hadoop distribution supported by
the specified plugin.
* deltas: list of integers which will be used to add or
remove worker nodes from the cluster
* floating_ip_pool: floating ip pool name from which Floating
IPs will be allocated. Sahara will determine
automatically how to treat this depending on
its own configurations. Defaults to None
because in some cases Sahara may work w/o
Floating IPs.
* neutron_net_id: id of a Neutron network that will be used
for fixed IPs. This parameter is ignored when
Nova Network is set up.
* volumes_per_node: number of Cinder volumes that will be
attached to every cluster node
* volumes_size: size of each Cinder volume in GB
* auto_security_group: boolean value. If set to True Sahara will
create a Security Group for each Node Group
in the Cluster automatically.
* security_groups: list of security groups that will be used
while creating VMs. If auto_security_group
is set to True this list can be left empty.
* node_configs: configs dict that will be passed to each Node
Group
* cluster_configs: configs dict that will be passed to the
Cluster
* enable_anti_affinity: If set to true the vms will be scheduled
one per compute node.
* enable_proxy: Use Master Node of a Cluster as a Proxy node and
do not assign floating ips to workers.

MODULE:
rally.plugins.openstack.scenarios.sahara.clusters

SaharaJob.create_launch_job [scenario]

Create and execute a Sahara EDP Job.

This scenario Creates a Job entity and launches an execution on a
Cluster.

PARAMETERS:
* job_type: type of the Data Processing Job
* configs: config dict that will be passed to a Job Execution
* job_idx: index of a job in a sequence. This index will be
used to create different atomic actions for each job
in a sequence

MODULE:
rally.plugins.openstack.scenarios.sahara.jobs

SaharaJob.create_launch_job_sequence [scenario]

Create and execute a sequence of the Sahara EDP Jobs.

This scenario Creates a Job entity and launches an execution on a
Cluster for every job object provided.

PARAMETERS:
* jobs: list of jobs that should be executed in one context

MODULE:
rally.plugins.openstack.scenarios.sahara.jobs

SaharaJob.create_launch_job_sequence_with_scaling [scenario]

Create and execute Sahara EDP Jobs on a scaling Cluster.

This scenario Creates a Job entity and launches an execution on a
Cluster for every job object provided. The Cluster is scaled according
to the deltas values and the sequence is launched again.

PARAMETERS:
* jobs: list of jobs that should be executed in one context
* deltas: list of integers which will be used to add or
remove worker nodes from the cluster

MODULE:
rally.plugins.openstack.scenarios.sahara.jobs

DesignateBasic.create_and_list_domains [scenario]

Create a domain and list all domains.

Measure the "designate domain-list" command performance.

If you have only 1 user in your context, you will
add 1 domain on every iteration. So you will have more
and more domain and will be able to measure the
performance of the "designate domain-list" command depending on
the number of domains owned by users.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.list_domains [scenario]

List Designate domains.

This simple scenario tests the designate domain-list command by listing
all the domains.

Suppose if we have 2 users in context and each has 2 domains
uploaded for them we will be able to test the performance of
designate domain-list command in this case.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_delete_domain [scenario]

Create and then delete a domain.

Measure the performance of creating and deleting domains
with different level of load.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_delete_records [scenario]

Create and then delete records.

Measure the performance of creating and deleting records
with different level of load.

PARAMETERS:
* records_per_domain: Records to create pr domain.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.list_records [scenario]

List Designate records.

This simple scenario tests the designate record-list command by listing
all the records in a domain.

Suppose if we have 2 users in context and each has 2 domains
uploaded for them we will be able to test the performance of
designate record-list command in this case.

PARAMETERS:
* domain_id: Domain ID

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_list_records [scenario]

Create and then list records.

If you have only 1 user in your context, you will
add 1 record on every iteration. So you will have more
and more records and will be able to measure the
performance of the "designate record-list" command depending on
the number of domains/records owned by users.

PARAMETERS:
* records_per_domain: Records to create pr domain.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_list_servers [scenario]

Create a Designate server and list all servers.

If you have only 1 user in your context, you will
add 1 server on every iteration. So you will have more
and more server and will be able to measure the
performance of the "designate server-list" command depending on
the number of servers owned by users.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_delete_server [scenario]

Create and then delete a server.

Measure the performance of creating and deleting servers
with different level of load.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.list_servers [scenario]

List Designate servers.

This simple scenario tests the designate server-list command by listing
all the servers.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_list_zones [scenario]

Create a zone and list all zones.

Measure the "openstack zone list" command performance.

If you have only 1 user in your context, you will
add 1 zone on every iteration. So you will have more
and more zone and will be able to measure the
performance of the "openstack zone list" command depending on
the number of zones owned by users.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.list_zones [scenario]

List Designate zones.

This simple scenario tests the openstack zone list command by listing
all the zones.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.create_and_delete_zone [scenario]

Create and then delete a zone.

Measure the performance of creating and deleting zones
with different level of load.

MODULE:
rally.plugins.openstack.scenarios.designate.basic

DesignateBasic.list_recordsets [scenario]

List Designate recordsets.

This simple scenario tests the openstack recordset list command by
listing all the recordsets in a zone.

PARAMETERS:
* zone_id: Zone ID

MODULE:
rally.plugins.openstack.scenarios.designate.basic

TempestScenario.single_test [scenario]

Launch a single Tempest test by its name.

PARAMETERS:
* test_name: name of tempest scenario for launching
* log_file: name of file for junitxml results
* tempest_conf: User specified tempest.conf location

MODULE:
rally.plugins.openstack.scenarios.tempest.tempest

TempestScenario.all [scenario]

Launch all discovered Tempest tests by their names.

PARAMETERS:
* log_file: name of file for junitxml results
* tempest_conf: User specified tempest.conf location

MODULE:
rally.plugins.openstack.scenarios.tempest.tempest

TempestScenario.set [scenario]

Launch all Tempest tests from a given set.

PARAMETERS:
* set_name: set name of tempest scenarios for launching
* log_file: name of file for junitxml results
* tempest_conf: User specified tempest.conf location

MODULE:
rally.plugins.openstack.scenarios.tempest.tempest

TempestScenario.list_of_tests [scenario]

Launch all Tempest tests from a given list of their names.

PARAMETERS:
* test_names: list of tempest scenarios for launching
* log_file: name of file for junitxml results
* tempest_conf: User specified tempest.conf location

MODULE:
rally.plugins.openstack.scenarios.tempest.tempest

TempestScenario.specific_regex [scenario]

Launch Tempest tests whose names match a given regular expression.

PARAMETERS:
* regex: regexp to match Tempest test names against
* log_file: name of file for junitxml results
* tempest_conf: User specified tempest.conf location

MODULE:
rally.plugins.openstack.scenarios.tempest.tempest

FuelNodes.add_and_remove_node [scenario]

Add node to environment and remove

PARAMETERS:
* node_roles: list. Roles, which node should be assigned to
env with

MODULE:
rally.plugins.openstack.scenarios.fuel.nodes

FuelEnvironments.create_and_delete_environment [scenario]

Create and delete Fuel environments.

PARAMETERS:
* release_id: release id (default 1)
* network_provider: network provider (default 'neutron')
* deployment_mode: deployment mode (default 'ha_compact')
* net_segment_type: net segment type (default 'vlan')
* delete_retries: retries count on delete oprations (default 5)

MODULE:
rally.plugins.openstack.scenarios.fuel.environments

FuelEnvironments.create_and_list_environments [scenario]

Create and list Fuel environments

PARAMETERS:
* release_id: release id (default 1)
* network_provider: network provider (default 'neutron')
* deployment_mode: deployment mode (default 'ha_compact')
* net_segment_type: net segment type (default 'vlan')

MODULE:
rally.plugins.openstack.scenarios.fuel.environments

VMTasks.boot_runcommand_delete [scenario]

Boot a server, run a script that outputs JSON, delete the server.

Example Script in samples/tasks/support/instance_dd_test.sh

PARAMETERS:
* image: glance image name to use for the vm
* flavor: VM flavor name
* username: ssh username on server, str
* password: Password on SSH authentication
* script: DEPRECATED. Use `command' instead. Script to run on
server, must output JSON mapping metric names to values (see the
sample script below)
* interpreter: DEPRECATED. Use `command' instead. server's
interpreter to run the script
* command: Command-specifying dictionary that either specifies
remote command path via `remote_path' (can be uploaded from a
local file specified by `local_path`), an inline script via
`script_inline' or a local script file path using `script_file'.
Both `script_file' and `local_path' are checked to be accessible
by the `file_exists' validator code.

The `script_inline' and `script_file' both require an `interpreter'
value to specify the interpreter script should be run with.

Note that any of `interpreter' and `remote_path' can be an array
prefixed with environment variables and suffixed with args for
the `interpreter' command. `remote_path's last component must be
a path to a command to execute (also upload destination if a
`local_path' is given). Uploading an interpreter is possible
but requires that `remote_path' and `interpreter' path do match.

Examples::

Run a `local_script.pl' file sending it to a remote
Perl interpreter
command = {
"script_file": "local_script.pl",
"interpreter": "/usr/bin/perl"
}

Run an inline script sending it to a remote interpreter
command = {
"script_inline": "echo 'Hello, World!'",
"interpreter": "/bin/sh"
}

Run a remote command
command = {
"remote_path": "/bin/false"
}

Copy a local command and run it
command = {
"remote_path": "/usr/local/bin/fio",
"local_path": "/home/foobar/myfiodir/bin/fio"
}

Copy a local command and run it with environment variable
command = {
"remote_path": ["HOME=/root", "/usr/local/bin/fio"],
"local_path": "/home/foobar/myfiodir/bin/fio"
}

Run an inline script sending it to a remote interpreter
command = {
"script_inline": "echo "Hello, ${NAME:-World}"",
"interpreter": ["NAME=Earth", "/bin/sh"]
}

Run an inline script sending it to an uploaded remote
interpreter
command = {
"script_inline": "echo "Hello, ${NAME:-World}"",
"interpreter": ["NAME=Earth", "/tmp/sh"],
"remote_path": "/tmp/sh",
"local_path": "/home/user/work/cve/sh-1.0/bin/sh"
}
* volume_args: volume args for booting server from volume
* floating_network: external network name, for floating ip
* port: ssh port for SSH connection
* use_floating_ip: bool, floating or fixed IP for SSH connection
* force_delete: whether to use force_delete for servers
* wait_for_ping: whether to check connectivity on server creation
* **kwargs: extra arguments for booting the server

RETURNS:
dictionary with keys `data' and `errors':
data: dict, JSON output from the script
errors: str, raw data from the script's stderr stream

MODULE:
rally.plugins.openstack.scenarios.vm.vmtasks

VMTasks.boot_runcommand_delete_custom_image [scenario]

Boot a server from a custom image, run a command that outputs JSON.

Example Script in rally-jobs/extra/install_benchmark.sh

MODULE:
rally.plugins.openstack.scenarios.vm.vmtasks

GlanceImages.create_and_list_image [scenario]

Create an image and then list all images.

Measure the "glance image-list" command performance.

If you have only 1 user in your context, you will
add 1 image on every iteration. So you will have more
and more images and will be able to measure the
performance of the "glance image-list" command depending on
the number of images owned by users.

PARAMETERS:
* container_format: container format of image. Acceptable
formats: ami, ari, aki, bare, and ovf
* image_location: image file location
* disk_format: disk format of image. Acceptable formats:
ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, and iso
* kwargs: optional parameters to create image

MODULE:
rally.plugins.openstack.scenarios.glance.images

GlanceImages.list_images [scenario]

List all images.

This simple scenario tests the glance image-list command by listing
all the images.

Suppose if we have 2 users in context and each has 2 images
uploaded for them we will be able to test the performance of
glance image-list command in this case.

MODULE:
rally.plugins.openstack.scenarios.glance.images

GlanceImages.create_and_delete_image [scenario]

Create and then delete an image.

PARAMETERS:
* container_format: container format of image. Acceptable
formats: ami, ari, aki, bare, and ovf
* image_location: image file location
* disk_format: disk format of image. Acceptable formats:
ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, and iso
* kwargs: optional parameters to create image

MODULE:
rally.plugins.openstack.scenarios.glance.images

GlanceImages.create_image_and_boot_instances [scenario]

Create an image and boot several instances from it.

PARAMETERS:
* container_format: container format of image. Acceptable
formats: ami, ari, aki, bare, and ovf
* image_location: image file location
* disk_format: disk format of image. Acceptable formats:
ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, and iso
* flavor: Nova flavor to be used to launch an instance
* number_instances: number of Nova servers to boot
* kwargs: optional parameters to create server

MODULE:
rally.plugins.openstack.scenarios.glance.images

Quotas.nova_update [scenario]

Update quotas for Nova.

PARAMETERS:
* max_quota: Max value to be updated for quota.

MODULE:
rally.plugins.openstack.scenarios.quotas.quotas

Quotas.nova_update_and_delete [scenario]

Update and delete quotas for Nova.

PARAMETERS:
* max_quota: Max value to be updated for quota.

MODULE:
rally.plugins.openstack.scenarios.quotas.quotas

Quotas.cinder_update [scenario]

Update quotas for Cinder.

PARAMETERS:
* max_quota: Max value to be updated for quota.

MODULE:
rally.plugins.openstack.scenarios.quotas.quotas

Quotas.cinder_update_and_delete [scenario]

Update and Delete quotas for Cinder.

PARAMETERS:
* max_quota: Max value to be updated for quota.

MODULE:
rally.plugins.openstack.scenarios.quotas.quotas

Quotas.neutron_update [scenario]

Update quotas for neutron.

PARAMETERS:
* max_quota: Max value to be updated for quota.

MODULE:
rally.plugins.openstack.scenarios.quotas.quotas

KeystoneBasic.create_user [scenario]

Create a keystone user with random name.

PARAMETERS:
* kwargs: Other optional parameters to create users like
"tenant_id", "enabled".

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_delete_user [scenario]

Create a keystone user with random name and then delete it.

PARAMETERS:
* kwargs: Other optional parameters to create users like
"tenant_id", "enabled".

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_user_set_enabled_and_delete [scenario]

Create a keystone user, enable or disable it, and delete it.

PARAMETERS:
* enabled: Initial state of user 'enabled' flag. The user
will be created with 'enabled' set to this
value, and then it will be toggled.
* kwargs: Other optional parameters to create user.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_tenant [scenario]

Create a keystone tenant with random name.

PARAMETERS:
* kwargs: Other optional parameters

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_tenant_with_users [scenario]

Create a keystone tenant and several users belonging to it.

PARAMETERS:
* users_per_tenant: number of users to create for the tenant
* kwargs: Other optional parameters for tenant creation

RETURNS:
keystone tenant instance

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_list_users [scenario]

Create a keystone user with random name and list all users.

PARAMETERS:
* kwargs: Other optional parameters to create users like
"tenant_id", "enabled".

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_list_tenants [scenario]

Create a keystone tenant with random name and list all tenants.

PARAMETERS:
* kwargs: Other optional parameters

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.add_and_remove_user_role [scenario]

Create a user role add to a user and disassociate.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_delete_role [scenario]

Create a user role and delete it.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_add_and_list_user_roles [scenario]

Create user role, add it and list user roles for given user.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.get_entities [scenario]

Get instance of a tenant, user, role and service by id's.

An ephemeral tenant, user, and role are each created. By
default, fetches the 'keystone' service. This can be
overridden (for instance, to get the 'Identity Service'
service on older OpenStack), or None can be passed explicitly
to service_name to create a new service and then query it by
ID.

PARAMETERS:
* service_name: The name of the service to get by ID; or
None, to create an ephemeral service and
get it by ID.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_delete_service [scenario]

Create and delete service.

PARAMETERS:
* service_type: type of the service
* description: description of the service

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_update_and_delete_tenant [scenario]

Create, update and delete tenant.

PARAMETERS:
* kwargs: Other optional parameters for tenant creation

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_user_update_password [scenario]

Create user and update password for that user.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_list_services [scenario]

Create and list services.

PARAMETERS:
* service_type: type of the service
* description: description of the service

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_list_ec2credentials [scenario]

Create and List all keystone ec2-credentials.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

KeystoneBasic.create_and_delete_ec2credential [scenario]

Create and delete keystone ec2-credential.

MODULE:
rally.plugins.openstack.scenarios.keystone.basic

Authenticate.keystone [scenario]

Check Keystone Client.

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

Authenticate.validate_glance [scenario]

Check Glance Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.
In following we are checking for non-existent image.

PARAMETERS:
* repetitions: number of times to validate

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

Authenticate.validate_nova [scenario]

Check Nova Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

PARAMETERS:
* repetitions: number of times to validate

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

Authenticate.validate_cinder [scenario]

Check Cinder Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

PARAMETERS:
* repetitions: number of times to validate

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

Authenticate.validate_neutron [scenario]

Check Neutron Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

PARAMETERS:
* repetitions: number of times to validate

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

Authenticate.validate_heat [scenario]

Check Heat Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

PARAMETERS:
* repetitions: number of times to validate

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

Authenticate.validate_monasca [scenario]

Check Monasca Client to ensure validation of token.

Creation of the client does not ensure validation of the token.
We have to do some minimal operation to make sure token gets validated.

PARAMETERS:
* repetitions: number of times to validate

MODULE:
rally.plugins.openstack.scenarios.authenticate.authenticate

MistralWorkbooks.list_workbooks [scenario]

Scenario test mistral workbook-list command.

This simple scenario tests the Mistral workbook-list
command by listing all the workbooks.

MODULE:
rally.plugins.openstack.scenarios.mistral.workbooks

MistralWorkbooks.create_workbook [scenario]

Scenario tests workbook creation and deletion.

This scenario is a very useful tool to measure the
"mistral workbook-create" and "mistral workbook-delete"
commands performance.

PARAMETERS:
* definition: string (yaml string) representation of given
file content (Mistral workbook definition)
* do_delete: if False than it allows to check performance
in "create only" mode.

MODULE:
rally.plugins.openstack.scenarios.mistral.workbooks

NovaImages.list_images [scenario]

List all images.

Measure the "nova image-list" command performance.

PARAMETERS:
* detailed: True if the image listing
should contain detailed information
* kwargs: Optional additional arguments for image listing

MODULE:
rally.plugins.openstack.scenarios.nova.images

NovaSecGroup.create_and_delete_secgroups [scenario]

Create and delete security groups.

This scenario creates N security groups with M rules per group and then
deletes them.

PARAMETERS:
* security_group_count: Number of security groups
* rules_per_security_group: Number of rules per security group

MODULE:
rally.plugins.openstack.scenarios.nova.security_group

NovaSecGroup.create_and_list_secgroups [scenario]

Create and list security groups.

This scenario creates N security groups with M rules per group and then
lists them.

PARAMETERS:
* security_group_count: Number of security groups
* rules_per_security_group: Number of rules per security group

MODULE:
rally.plugins.openstack.scenarios.nova.security_group

NovaSecGroup.create_and_update_secgroups [scenario]

Create and update security groups.

This scenario creates 'security_group_count' security groups
then updates their name and description.

PARAMETERS:
* security_group_count: Number of security groups

MODULE:
rally.plugins.openstack.scenarios.nova.security_group

NovaSecGroup.boot_and_delete_server_with_secgroups [scenario]

Boot and delete server with security groups attached.

Plan of this scenario:
- create N security groups with M rules per group
vm with security groups)
- boot a VM with created security groups
- get list of attached security groups to server
- delete server
- delete all security groups
- check that all groups were attached to server

PARAMETERS:
* image: ID of the image to be used for server creation
* flavor: ID of the flavor to be used for server creation
* security_group_count: Number of security groups
* rules_per_security_group: Number of rules per security group
* **kwargs: Optional arguments for booting the instance

MODULE:
rally.plugins.openstack.scenarios.nova.security_group

NovaKeypair.create_and_list_keypairs [scenario]

Create a keypair with random name and list keypairs.

This scenario creates a keypair and then lists all keypairs.

PARAMETERS:
* kwargs: Optional additional arguments for keypair creation

MODULE:
rally.plugins.openstack.scenarios.nova.keypairs

NovaKeypair.create_and_delete_keypair [scenario]

Create a keypair with random name and delete keypair.

This scenario creates a keypair and then delete that keypair.

PARAMETERS:
* kwargs: Optional additional arguments for keypair creation

MODULE:
rally.plugins.openstack.scenarios.nova.keypairs

NovaKeypair.boot_and_delete_server_with_keypair [scenario]

Boot and delete server with keypair.

Plan of this scenario:
- create a keypair
- boot a VM with created keypair
- delete server
- delete keypair

PARAMETERS:
* image: ID of the image to be used for server creation
* flavor: ID of the flavor to be used for server creation
* server_kwargs: Optional additional arguments for VM creation
* kwargs: Optional additional arguments for keypair creation

MODULE:
rally.plugins.openstack.scenarios.nova.keypairs

NovaServers.boot_and_list_server [scenario]

Boot a server from an image and then list all servers.

Measure the "nova list" command performance.

If you have only 1 user in your context, you will
add 1 server on every iteration. So you will have more
and more servers and will be able to measure the
performance of the "nova list" command depending on
the number of servers owned by users.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* detailed: True if the server listing should contain
detailed information about all of them
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.list_servers [scenario]

List all servers.

This simple scenario test the nova list command by listing
all the servers.

PARAMETERS:
* detailed: True if detailed information about servers
should be listed

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_delete_server [scenario]

Boot and delete a server.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between volume creation and deletion
(of random duration from [min_sleep, max_sleep]).

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_delete_multiple_servers [scenario]

Boot multiple servers in a single request and delete them.

Deletion is done in parallel with one request per server, not
with a single request for all servers.

PARAMETERS:
* image: The image to boot from
* flavor: Flavor used to boot instance
* count: Number of instances to boot
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for instance creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server_from_volume_and_delete [scenario]

Boot a server from volume and then delete it.

The scenario first creates a volume and then a server.
Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between volume creation and deletion
(of random duration from [min_sleep, max_sleep]).

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* volume_size: volume size (in GB)
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_bounce_server [scenario]

Boot a server and run specified actions against it.

Actions should be passed into the actions parameter. Available actions
are 'hard_reboot', 'soft_reboot', 'stop_start' and 'rescue_unrescue'.
Delete server after all actions were completed.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* force_delete: True if force_delete should be used
* actions: list of action dictionaries, where each action
dictionary speicifes an action to be performed
in the following format:
{"action_name": <no_of_iterations>}
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_lock_unlock_and_delete [scenario]

Boot a server, lock it, then unlock and delete it.

Optional 'min_sleep' and 'max_sleep' parameters allow the
scenario to simulate a pause between locking and unlocking the
server (of random duration from min_sleep to max_sleep).

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* min_sleep: Minimum sleep time between locking and unlocking
in seconds
* max_sleep: Maximum sleep time between locking and unlocking
in seconds
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.snapshot_server [scenario]

Boot a server, make its snapshot and delete both.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server [scenario]

Boot a server.

Assumes that cleanup is done elsewhere.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* auto_assign_nic: True if NICs should be assigned
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server_from_volume [scenario]

Boot a server from volume.

The scenario first creates a volume and then a server.
Assumes that cleanup is done elsewhere.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* volume_size: volume size (in GB)
* auto_assign_nic: True if NICs should be assigned
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.resize_server [scenario]

Boot a server, then resize and delete it.

This test will confirm the resize by default,
or revert the resize if confirm is set to false.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* to_flavor: flavor to be used to resize the booted instance
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server_attach_created_volume_and_resize [scenario]

Create a VM from image, attach a volume to it and resize.

Simple test to create a VM and attach a volume, then resize the VM,
detach the volume then delete volume and VM.
Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between attaching a volume and running resize
(of random duration from range [min_sleep, max_sleep]).

PARAMETERS:
* image: Glance image name to use for the VM
* flavor: VM flavor name
* to_flavor: flavor to be used to resize the booted instance
* volume_size: volume size (in GB)
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* force_delete: True if force_delete should be used
* confirm: True if need to confirm resize else revert resize
* do_delete: True if resources needs to be deleted explicitly
else use rally cleanup to remove resources
* boot_server_kwargs: optional arguments for VM creation
* create_volume_kwargs: optional arguments for volume creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server_from_volume_and_resize [scenario]

Boot a server from volume, then resize and delete it.

The scenario first creates a volume and then a server.
Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between volume creation and deletion
(of random duration from [min_sleep, max_sleep]).

This test will confirm the resize by default,
or revert the resize if confirm is set to false.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* to_flavor: flavor to be used to resize the booted instance
* volume_size: volume size (in GB)
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* force_delete: True if force_delete should be used
* confirm: True if need to confirm resize else revert resize
* do_delete: True if resources needs to be deleted explicitly
else use rally cleanup to remove resources
* boot_server_kwargs: optional arguments for VM creation
* create_volume_kwargs: optional arguments for volume creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.suspend_and_resume_server [scenario]

Create a server, suspend, resume and then delete it

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.pause_and_unpause_server [scenario]

Create a server, pause, unpause and then delete it

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.shelve_and_unshelve_server [scenario]

Create a server, shelve, unshelve and then delete it

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* force_delete: True if force_delete should be used
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_live_migrate_server [scenario]

Live Migrate a server.

This scenario launches a VM on a compute node available in
the availability zone and then migrates the VM to another
compute node on the same availability zone.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between VM booting and running live migration
(of random duration from range [min_sleep, max_sleep]).

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* block_migration: Specifies the migration type
* disk_over_commit: Specifies whether to allow overcommit
on migrated instance or not
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server_from_volume_and_live_migrate [scenario]

Boot a server from volume and then migrate it.

The scenario first creates a volume and a server booted from
the volume on a compute node available in the availability zone and
then migrates the VM to another compute node on the same availability
zone.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between VM booting and running live migration
(of random duration from range [min_sleep, max_sleep]).

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* volume_size: volume size (in GB)
* block_migration: Specifies the migration type
* disk_over_commit: Specifies whether to allow overcommit
on migrated instance or not
* force_delete: True if force_delete should be used
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_server_attach_created_volume_and_live_migrate [scenario]

Create a VM, attach a volume to it and live migrate.

Simple test to create a VM and attach a volume, then migrate the VM,
detach the volume and delete volume/VM.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between attaching a volume and running live
migration (of random duration from range [min_sleep, max_sleep]).

PARAMETERS:
* image: Glance image name to use for the VM
* flavor: VM flavor name
* size: volume size (in GB)
* block_migration: Specifies the migration type
* disk_over_commit: Specifies whether to allow overcommit
on migrated instance or not
* boot_server_kwargs: optional arguments for VM creation
* create_volume_kwargs: optional arguments for volume creation
* min_sleep: Minimum sleep time in seconds (non-negative)
* max_sleep: Maximum sleep time in seconds (non-negative)

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_migrate_server [scenario]

Migrate a server.

This scenario launches a VM on a compute node available in
the availability zone and stops the VM, and then migrates the VM
to another compute node on the same availability zone.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_rebuild_server [scenario]

Rebuild a server.

This scenario launches a VM, then rebuilds that VM with a
different image.

PARAMETERS:
* from_image: image to be used to boot an instance
* to_image: image to be used to rebuild the instance
* flavor: flavor to be used to boot an instance
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_associate_floating_ip [scenario]

Boot a server and associate a floating IP to it.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* kwargs: Optional additional arguments for server creation

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_show_server [scenario]

Show server details.

This simple scenario tests the nova show command by retrieving
the server details.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* kwargs: Optional additional arguments for server creation

RETURNS:
Server details

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaServers.boot_and_get_console_output [scenario]

Get text console output from server.

This simple scenario tests the nova console-log command by retrieving
the text console log output.

PARAMETERS:
* image: image to be used to boot an instance
* flavor: flavor to be used to boot an instance
* length: The number of tail log lines you would like to retrieve.
None (default value) or -1 means unlimited length.
* kwargs: Optional additional arguments for server creation

RETURNS:
Text console log output for server

MODULE:
rally.plugins.openstack.scenarios.nova.servers

NovaFloatingIpsBulk.create_and_list_floating_ips_bulk [scenario]

Create nova floating IP by range and list it.

This scenario creates a floating IP by range and then lists all.

PARAMETERS:
* start_cidr: Floating IP range
* kwargs: Optional additional arguments for range IP creation

MODULE:
rally.plugins.openstack.scenarios.nova.floating_ips_bulk

NovaFloatingIpsBulk.create_and_delete_floating_ips_bulk [scenario]

Create nova floating IP by range and delete it.

This scenario creates a floating IP by range and then delete it.

PARAMETERS:
* start_cidr: Floating IP range
* kwargs: Optional additional arguments for range IP creation

MODULE:
rally.plugins.openstack.scenarios.nova.floating_ips_bulk

NovaNetworks.create_and_list_networks [scenario]

Create nova network and list all networks.

PARAMETERS:
* start_cidr: IP range
* kwargs: Optional additional arguments for network creation

MODULE:
rally.plugins.openstack.scenarios.nova.networks

NovaNetworks.create_and_delete_network [scenario]

Create nova network and delete it.

PARAMETERS:
* start_cidr: IP range
* kwargs: Optional additional arguments for network creation

MODULE:
rally.plugins.openstack.scenarios.nova.networks

NovaHypervisors.list_hypervisors [scenario]

List hypervisors.

Measure the "nova hypervisor-list" command performance.

PARAMETERS:
* detailed: True if the hypervisor listing should contain
detailed information about all of them

MODULE:
rally.plugins.openstack.scenarios.nova.hypervisors

NeutronNetworks.create_and_list_networks [scenario]

Create a network and then list all networks.

Measure the "neutron net-list" command performance.

If you have only 1 user in your context, you will
add 1 network on every iteration. So you will have more
and more networks and will be able to measure the
performance of the "neutron net-list" command depending on
the number of networks owned by users.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_update_networks [scenario]

Create and update a network.

Measure the "neutron net-create and net-update" command performance.

PARAMETERS:
* network_update_args: dict, PUT /v2.0/networks update request
* network_create_args: dict, POST /v2.0/networks request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_delete_networks [scenario]

Create and delete a network.

Measure the "neutron net-create" and "net-delete" command performance.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_list_subnets [scenario]

Create and a given number of subnets and list all subnets.

The scenario creates a network, a given number of subnets and then
lists subnets.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated
* subnet_create_args: dict, POST /v2.0/subnets request options
* subnet_cidr_start: str, start value for subnets CIDR
* subnets_per_network: int, number of subnets for one network

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_update_subnets [scenario]

Create and update a subnet.

The scenario creates a network, a given number of subnets
and then updates the subnet. This scenario measures the
"neutron subnet-update" command performance.

PARAMETERS:
* subnet_update_args: dict, PUT /v2.0/subnets update options
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* subnet_create_args: dict, POST /v2.0/subnets request options
* subnet_cidr_start: str, start value for subnets CIDR
* subnets_per_network: int, number of subnets for one network

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_delete_subnets [scenario]

Create and delete a given number of subnets.

The scenario creates a network, a given number of subnets and then
deletes subnets.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* subnet_create_args: dict, POST /v2.0/subnets request options
* subnet_cidr_start: str, start value for subnets CIDR
* subnets_per_network: int, number of subnets for one network

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_list_routers [scenario]

Create and a given number of routers and list all routers.

Create a network, a given number of subnets and routers
and then list all routers.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* subnet_create_args: dict, POST /v2.0/subnets request options
* subnet_cidr_start: str, start value for subnets CIDR
* subnets_per_network: int, number of subnets for one network
* router_create_args: dict, POST /v2.0/routers request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_update_routers [scenario]

Create and update a given number of routers.

Create a network, a given number of subnets and routers
and then updating all routers.

PARAMETERS:
* router_update_args: dict, PUT /v2.0/routers update options
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* subnet_create_args: dict, POST /v2.0/subnets request options
* subnet_cidr_start: str, start value for subnets CIDR
* subnets_per_network: int, number of subnets for one network
* router_create_args: dict, POST /v2.0/routers request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_delete_routers [scenario]

Create and delete a given number of routers.

Create a network, a given number of subnets and routers
and then delete all routers.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* subnet_create_args: dict, POST /v2.0/subnets request options
* subnet_cidr_start: str, start value for subnets CIDR
* subnets_per_network: int, number of subnets for one network
* router_create_args: dict, POST /v2.0/routers request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_list_ports [scenario]

Create and a given number of ports and list all ports.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* port_create_args: dict, POST /v2.0/ports request options
* ports_per_network: int, number of ports for one network

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_update_ports [scenario]

Create and update a given number of ports.

Measure the "neutron port-create" and "neutron port-update" commands
performance.

PARAMETERS:
* port_update_args: dict, PUT /v2.0/ports update request options
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* port_create_args: dict, POST /v2.0/ports request options
* ports_per_network: int, number of ports for one network

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_delete_ports [scenario]

Create and delete a port.

Measure the "neutron port-create" and "neutron port-delete" commands
performance.

PARAMETERS:
* network_create_args: dict, POST /v2.0/networks request
options. Deprecated.
* port_create_args: dict, POST /v2.0/ports request options
* ports_per_network: int, number of ports for one network

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_list_floating_ips [scenario]

Create and list floating IPs.

Measure the "neutron floating-ip-create" and "neutron floating-ip-list"
commands performance.

PARAMETERS:
* floating_network: str, external network for floating IP creation
* floating_ip_args: dict, POST /floatingips request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronNetworks.create_and_delete_floating_ips [scenario]

Create and delete floating IPs.

Measure the "neutron floating-ip-create" and "neutron
floating-ip-delete" commands performance.

PARAMETERS:
* floating_network: str, external network for floating IP creation
* floating_ip_args: dict, POST /floatingips request options

MODULE:
rally.plugins.openstack.scenarios.neutron.network

NeutronSecurityGroup.create_and_list_security_groups [scenario]

Create and list Neutron security-groups.

Measure the "neutron security-group-create" and "neutron
security-group-list" command performance.

PARAMETERS:
* security_group_create_args: dict, POST /v2.0/security-groups
request options

MODULE:
rally.plugins.openstack.scenarios.neutron.security_groups

NeutronSecurityGroup.create_and_delete_security_groups [scenario]

Create and delete Neutron security-groups.

Measure the "neutron security-group-create" and "neutron
security-group-delete" command performance.

PARAMETERS:
* security_group_create_args: dict, POST /v2.0/security-groups
request options

MODULE:
rally.plugins.openstack.scenarios.neutron.security_groups

NeutronSecurityGroup.create_and_update_security_groups [scenario]

Create and update Neutron security-groups.

Measure the "neutron security-group-create" and "neutron
security-group-update" command performance.

PARAMETERS:
* security_group_create_args: dict, POST /v2.0/security-groups
request options
* security_group_update_args: dict, POST /v2.0/security-groups
update options

MODULE:
rally.plugins.openstack.scenarios.neutron.security_groups

NeutronLoadbalancerV1.create_and_list_pools [scenario]

Create a pool(v1) and then list pools(v1).

Measure the "neutron lb-pool-list" command performance.
The scenario creates a pool for every subnet and then lists pools.

PARAMETERS:
* pool_create_args: dict, POST /lb/pools request options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_delete_pools [scenario]

Create pools(v1) and delete pools(v1).

Measure the "neutron lb-pool-create" and "neutron lb-pool-delete"
command performance. The scenario creates a pool for every subnet
and then deletes those pools.

PARAMETERS:
* pool_create_args: dict, POST /lb/pools request options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_update_pools [scenario]

Create pools(v1) and update pools(v1).

Measure the "neutron lb-pool-create" and "neutron lb-pool-update"
command performance. The scenario creates a pool for every subnet
and then update those pools.

PARAMETERS:
* pool_create_args: dict, POST /lb/pools request options
* pool_update_args: dict, POST /lb/pools update options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_list_vips [scenario]

Create a vip(v1) and then list vips(v1).

Measure the "neutron lb-vip-create" and "neutron lb-vip-list" command
performance. The scenario creates a vip for every pool created and
then lists vips.

PARAMETERS:
* vip_create_args: dict, POST /lb/vips request options
* pool_create_args: dict, POST /lb/pools request options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_delete_vips [scenario]

Create a vip(v1) and then delete vips(v1).

Measure the "neutron lb-vip-create" and "neutron lb-vip-delete"
command performance. The scenario creates a vip for pool and
then deletes those vips.

PARAMETERS:
* pool_create_args: dict, POST /lb/pools request options
* vip_create_args: dict, POST /lb/vips request options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_update_vips [scenario]

Create vips(v1) and update vips(v1).

Measure the "neutron lb-vip-create" and "neutron lb-vip-update"
command performance. The scenario creates a pool for every subnet
and then update those pools.

PARAMETERS:
* pool_create_args: dict, POST /lb/pools request options
* vip_create_args: dict, POST /lb/vips request options
* vip_update_args: dict, POST /lb/vips update options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_list_healthmonitors [scenario]

Create healthmonitors(v1) and list healthmonitors(v1).

Measure the "neutron lb-healthmonitor-list" command performance. This
scenario creates healthmonitors and lists them.

PARAMETERS:
* healthmonitor_create_args: dict, POST /lb/healthmonitors request
options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_delete_healthmonitors [scenario]

Create a healthmonitor(v1) and delete healthmonitors(v1).

Measure the "neutron lb-healthmonitor-create" and "neutron
lb-healthmonitor-delete" command performance. The scenario creates
healthmonitors and deletes those healthmonitors.

PARAMETERS:
* healthmonitor_create_args: dict, POST /lb/healthmonitors request
options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

NeutronLoadbalancerV1.create_and_update_healthmonitors [scenario]

Create a healthmonitor(v1) and update healthmonitors(v1).

Measure the "neutron lb-healthmonitor-create" and "neutron
lb-healthmonitor-update" command performance. The scenario creates
healthmonitors and then updates them.

PARAMETERS:
* healthmonitor_create_args: dict, POST /lb/healthmonitors request
options
* healthmonitor_update_args: dict, POST /lb/healthmonitors update
options

MODULE:
rally.plugins.openstack.scenarios.neutron.loadbalancer_v1

CeilometerStats.create_meter_and_get_stats [scenario]

Create a meter and fetch its statistics.

Meter is first created and then statistics is fetched for the same
using GET /v2/meters/(meter_name)/statistics.

PARAMETERS:
* kwargs: contains optional arguments to create a meter

MODULE:
rally.plugins.openstack.scenarios.ceilometer.stats

CeilometerStats.get_stats [scenario]

Fetch statistics for certain meter.

Statistics is fetched for the using
GET /v2/meters/(meter_name)/statistics.

PARAMETERS:
* meter_name: meter to take statistic for
* filter_by_user_id: flag for query by user_id
* filter_by_project_id: flag for query by project_id
* filter_by_resource_id: flag for query by resource_id
* metadata_query: dict with metadata fields and values for query
* period: the length of the time range covered by these stats
* groupby: the fields used to group the samples
* aggregates: name of function for samples aggregation

RETURNS:
list of statistics data

MODULE:
rally.plugins.openstack.scenarios.ceilometer.stats

CeilometerSamples.list_matched_samples [scenario]

Get list of samples that matched fields from context and args.

PARAMETERS:
* filter_by_user_id: flag for query by user_id
* filter_by_project_id: flag for query by project_id
* filter_by_resource_id: flag for query by resource_id
* metadata_query: dict with metadata fields and values for query
* limit: count of samples in response

MODULE:
rally.plugins.openstack.scenarios.ceilometer.samples

CeilometerSamples.list_samples [scenario]

Fetch all available queries for list sample request.

PARAMETERS:
* metadata_query: dict with metadata fields and values for query
* limit: count of samples in response

MODULE:
rally.plugins.openstack.scenarios.ceilometer.samples

CeilometerTraits.create_user_and_list_traits [scenario]

Create user and fetch all event traits.

This scenario creates user to store new event and
fetches list of all traits for certain event type and
trait name using GET /v2/event_types/<event_type>/traits/<trait_name>.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.traits

CeilometerTraits.create_user_and_list_trait_descriptions [scenario]

Create user and fetch all trait descriptions.

This scenario creates user to store new event and
fetches list of all traits for certain event type using
GET /v2/event_types/<event_type>/traits.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.traits

CeilometerEvents.create_user_and_list_events [scenario]

Create user and fetch all events.

This scenario creates user to store new event and
fetches list of all events using GET /v2/events.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.events

CeilometerEvents.create_user_and_list_event_types [scenario]

Create user and fetch all event types.

This scenario creates user to store new event and
fetches list of all events types using GET /v2/event_types.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.events

CeilometerEvents.create_user_and_get_event [scenario]

Create user and gets event.

This scenario creates user to store new event and
fetches one event using GET /v2/events/<message_id>.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.events

CeilometerResource.list_resources [scenario]

Check all available queries for list resource request.

This scenario fetches list of all resources using GET /v2/resources.

PARAMETERS:
* metadata_query: dict with metadata fields and values for query
* start_time: lower bound of resource timestamp in isoformat
* end_time: upper bound of resource timestamp in isoformat
* limit: count of resources in response

MODULE:
rally.plugins.openstack.scenarios.ceilometer.resources

CeilometerResource.get_tenant_resources [scenario]

Get all tenant resources.

This scenario retrieves information about tenant resources using
GET /v2/resources/(resource_id)

MODULE:
rally.plugins.openstack.scenarios.ceilometer.resources

CeilometerResource.list_matched_resources [scenario]

Get resources that matched fields from context and args.

PARAMETERS:
* filter_by_user_id: flag for query by user_id
* filter_by_project_id: flag for query by project_id
* filter_by_resource_id: flag for query by resource_id
* metadata_query: dict with metadata fields and values for query
* start_time: lower bound of resource timestamp in isoformat
* end_time: upper bound of resource timestamp in isoformat
* limit: count of resources in response

MODULE:
rally.plugins.openstack.scenarios.ceilometer.resources

CeilometerMeters.list_meters [scenario]

Check all available queries for list resource request.

PARAMETERS:
* metadata_query: dict with metadata fields and values
* limit: limit of meters in response

MODULE:
rally.plugins.openstack.scenarios.ceilometer.meters

CeilometerMeters.list_matched_meters [scenario]

Get meters that matched fields from context and args.

PARAMETERS:
* filter_by_user_id: flag for query by user_id
* filter_by_project_id: flag for query by project_id
* filter_by_resource_id: flag for query by resource_id
* metadata_query: dict with metadata fields and values for query
* limit: count of resources in response

MODULE:
rally.plugins.openstack.scenarios.ceilometer.meters

CeilometerQueries.create_and_query_alarms [scenario]

Create an alarm and then query it with specific parameters.

This scenario tests POST /v2/query/alarms
An alarm is first created and then fetched using the input query.

PARAMETERS:
* meter_name: specifies meter name of alarm
* threshold: specifies alarm threshold
* filter: optional filter query dictionary
* orderby: optional param for specifying ordering of results
* limit: optional param for maximum number of results returned
* kwargs: optional parameters for alarm creation

MODULE:
rally.plugins.openstack.scenarios.ceilometer.queries

CeilometerQueries.create_and_query_alarm_history [scenario]

Create an alarm and then query for its history.

This scenario tests POST /v2/query/alarms/history
An alarm is first created and then its alarm_id is used to fetch the
history of that specific alarm.

PARAMETERS:
* meter_name: specifies meter name of alarm
* threshold: specifies alarm threshold
* orderby: optional param for specifying ordering of results
* limit: optional param for maximum number of results returned
* kwargs: optional parameters for alarm creation

MODULE:
rally.plugins.openstack.scenarios.ceilometer.queries

CeilometerQueries.create_and_query_samples [scenario]

Create a sample and then query it with specific parameters.

This scenario tests POST /v2/query/samples
A sample is first created and then fetched using the input query.

PARAMETERS:
* counter_name: specifies name of the counter
* counter_type: specifies type of the counter
* counter_unit: specifies unit of the counter
* counter_volume: specifies volume of the counter
* resource_id: specifies resource id for the sample created
* filter: optional filter query dictionary
* orderby: optional param for specifying ordering of results
* limit: optional param for maximum number of results returned
* kwargs: parameters for sample creation

MODULE:
rally.plugins.openstack.scenarios.ceilometer.queries

CeilometerAlarms.create_alarm [scenario]

Create an alarm.

This scenarios test POST /v2/alarms.
meter_name and threshold are required parameters for alarm creation.
kwargs stores other optional parameters like 'ok_actions',
'project_id' etc that may be passed while creating an alarm.

PARAMETERS:
* meter_name: specifies meter name of the alarm
* threshold: specifies alarm threshold
* kwargs: specifies optional arguments for alarm creation.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.alarms

CeilometerAlarms.list_alarms [scenario]

Fetch all alarms.

This scenario fetches list of all alarms using GET /v2/alarms.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.alarms

CeilometerAlarms.create_and_list_alarm [scenario]

Create and get the newly created alarm.

This scenarios test GET /v2/alarms/(alarm_id)
Initially alarm is created and then the created alarm is fetched using
its alarm_id. meter_name and threshold are required parameters
for alarm creation. kwargs stores other optional parameters like
'ok_actions', 'project_id' etc. that may be passed while creating
an alarm.

PARAMETERS:
* meter_name: specifies meter name of the alarm
* threshold: specifies alarm threshold
* kwargs: specifies optional arguments for alarm creation.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.alarms

CeilometerAlarms.create_and_update_alarm [scenario]

Create and update the newly created alarm.

This scenarios test PUT /v2/alarms/(alarm_id)
Initially alarm is created and then the created alarm is updated using
its alarm_id. meter_name and threshold are required parameters
for alarm creation. kwargs stores other optional parameters like
'ok_actions', 'project_id' etc that may be passed while alarm creation.

PARAMETERS:
* meter_name: specifies meter name of the alarm
* threshold: specifies alarm threshold
* kwargs: specifies optional arguments for alarm creation.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.alarms

CeilometerAlarms.create_and_delete_alarm [scenario]

Create and delete the newly created alarm.

This scenarios test DELETE /v2/alarms/(alarm_id)
Initially alarm is created and then the created alarm is deleted using
its alarm_id. meter_name and threshold are required parameters
for alarm creation. kwargs stores other optional parameters like
'ok_actions', 'project_id' etc that may be passed while alarm creation.

PARAMETERS:
* meter_name: specifies meter name of the alarm
* threshold: specifies alarm threshold
* kwargs: specifies optional arguments for alarm creation.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.alarms

CeilometerAlarms.create_alarm_and_get_history [scenario]

Create an alarm, get and set the state and get the alarm history.

This scenario makes following queries:
GET /v2/alarms/{alarm_id}/history
GET /v2/alarms/{alarm_id}/state
PUT /v2/alarms/{alarm_id}/state
Initially alarm is created and then get the state of the created alarm
using its alarm_id. Then get the history of the alarm. And finally the
state of the alarm is updated using given state. meter_name and
threshold are required parameters for alarm creation. kwargs stores
other optional parameters like 'ok_actions', 'project_id' etc that may
be passed while alarm creation.

PARAMETERS:
* meter_name: specifies meter name of the alarm
* threshold: specifies alarm threshold
* state: an alarm state to be set
* timeout: The number of seconds for which to attempt a
successful check of the alarm state
* kwargs: specifies optional arguments for alarm creation.

MODULE:
rally.plugins.openstack.scenarios.ceilometer.alarms

ZaqarBasic.create_queue [scenario]

Create a Zaqar queue with a random name.

PARAMETERS:
* kwargs: other optional parameters to create queues like
"metadata"

MODULE:
rally.plugins.openstack.scenarios.zaqar.basic

ZaqarBasic.producer_consumer [scenario]

Serial message producer/consumer.

Creates a Zaqar queue with random name, sends a set of messages
and then retrieves an iterator containing those.

PARAMETERS:
* min_msg_count: min number of messages to be posted
* max_msg_count: max number of messages to be posted
* kwargs: other optional parameters to create queues like
"metadata"

MODULE:
rally.plugins.openstack.scenarios.zaqar.basic

ManilaShares.create_and_delete_share [scenario]

Create and delete a share.

Optional 'min_sleep' and 'max_sleep' parameters allow the scenario
to simulate a pause between share creation and deletion
(of random duration from [min_sleep, max_sleep]).

PARAMETERS:
* share_proto: share protocol, valid values are NFS, CIFS,
GlusterFS and HDFS
* size: share size in GB, should be greater than 0
* min_sleep: minimum sleep time in seconds (non-negative)
* max_sleep: maximum sleep time in seconds (non-negative)
* kwargs: optional args to create a share

MODULE:
rally.plugins.openstack.scenarios.manila.shares

ManilaShares.list_shares [scenario]

Basic scenario for 'share list' operation.

PARAMETERS:
* detailed: defines either to return detailed list of
objects or not.
* search_opts: container of search opts such as
"name", "host", "share_type", etc.

MODULE:
rally.plugins.openstack.scenarios.manila.shares

ManilaShares.create_share_network_and_delete [scenario]

Creates share network and then deletes.

PARAMETERS:
* neutron_net_id: ID of Neutron network
* neutron_subnet_id: ID of Neutron subnet
* nova_net_id: ID of Nova network
* description: share network description

MODULE:
rally.plugins.openstack.scenarios.manila.shares

ManilaShares.create_share_network_and_list [scenario]

Creates share network and then lists it.

PARAMETERS:
* neutron_net_id: ID of Neutron network
* neutron_subnet_id: ID of Neutron subnet
* nova_net_id: ID of Nova network
* description: share network description
* detailed: defines either to return detailed list of
objects or not.
* search_opts: container of search opts such as
"name", "nova_net_id", "neutron_net_id", etc.

MODULE:
rally.plugins.openstack.scenarios.manila.shares

ManilaShares.list_share_servers [scenario]

Lists share servers.

Requires admin creds.

PARAMETERS:
* search_opts: container of following search opts:
"host", "status", "share_network" and "project_id".

MODULE:
rally.plugins.openstack.scenarios.manila.shares

ManilaShares.create_security_service_and_delete [scenario]

Creates security service and then deletes.

PARAMETERS:
* security_service_type: security service type, permitted values
are 'ldap', 'kerberos' or 'active_directory'.
* dns_ip: dns ip address used inside tenant's network
* server: security service server ip address or hostname
* domain: security service domain
* user: security identifier used by tenant
* password: password used by user
* description: security service description

MODULE:
rally.plugins.openstack.scenarios.manila.shares

ManilaShares.attach_security_service_to_share_network [scenario]

Attaches security service to share network.

PARAMETERS:
* security_service_type: type of security service to use.
Should be one of following: 'ldap', 'kerberos' or
'active_directory'.

MODULE:
rally.plugins.openstack.scenarios.manila.shares

HttpRequests.check_request [scenario]

Standard way to benchmark web services.

This benchmark is used to make request and check it with expected
Response.

PARAMETERS:
* url: url for the Request object
* method: method for the Request object
* status_code: expected response code
* kwargs: optional additional request parameters

MODULE:
rally.plugins.common.scenarios.requests.http_requests

HttpRequests.check_random_request [scenario]

Benchmark the list of requests

This scenario takes random url from list of requests, and raises
exception if the response is not the expected response.

PARAMETERS:
* requests: List of request dicts
* status_code: Expected Response Code it will
be used only if we doesn't specified it in request proper

MODULE:
rally.plugins.common.scenarios.requests.http_requests

Dummy.dummy [scenario]

Do nothing and sleep for the given number of seconds (0 by default).

Dummy.dummy can be used for testing performance of different
ScenarioRunners and of the ability of rally to store a large
amount of results.

PARAMETERS:
* sleep: idle time of method (in seconds).

MODULE:
rally.plugins.common.scenarios.dummy.dummy

Dummy.dummy_exception [scenario]

Throw an exception.

Dummy.dummy_exception can be used for test if exceptions are processed
properly by ScenarioRunners and benchmark and analyze rally
results storing process.

PARAMETERS:
* size_of_message: int size of the exception message
* sleep: idle time of method (in seconds).
* message: message of the exception

MODULE:
rally.plugins.common.scenarios.dummy.dummy

Dummy.dummy_exception_probability [scenario]

Throw an exception with given probability.

Dummy.dummy_exception_probability can be used to test if exceptions
are processed properly by ScenarioRunners. This scenario will throw
an exception sometimes, depending on the given exception probability.

PARAMETERS:
* exception_probability: Sets how likely it is that an exception
will be thrown. Float between 0 and 1
0=never 1=always.

MODULE:
rally.plugins.common.scenarios.dummy.dummy

Dummy.dummy_with_scenario_output [scenario]

Return a dummy scenario output.

Dummy.dummy_with_scenario_output can be used to test the scenario
output processing.

MODULE:
rally.plugins.common.scenarios.dummy.dummy

Dummy.dummy_random_fail_in_atomic [scenario]

Randomly throw exceptions in atomic actions.

Dummy.dummy_random_fail_in_atomic can be used to test atomic actions
failures processing.

PARAMETERS:
* exception_probability: Probability with which atomic actions
fail in this dummy scenario (0 <= p <= 1)

MODULE:
rally.plugins.common.scenarios.dummy.dummy

Engines [deployment]

DevstackEngine [engine]

Deploy Devstack cloud.

Sample configuration:

{
"type": "DevstackEngine",
"devstack_repo": "https://example.com/devstack/",
"local_conf": {
"ADMIN_PASSWORD": "secret"
},
"provider": {
"type": "ExistingServers",
"credentials": [{"user": "root", "host": "10.2.0.8"}]
}
}

MODULE:
rally.deployment.engines.devstack

ExistingCloud [engine]

Just use an existing OpenStack deployment without deploying anything.

To use ExistingCloud, you should put credential information to the config:

{
"type": "ExistingCloud",
"auth_url": "http://localhost:5000/v2.0/",
"region_name": "RegionOne",
"endpoint_type": "public",
"admin": {
"username": "admin",
"password": "password",
"tenant_name": "demo"
},
"https_insecure": False,
"https_cacert": "",
}

Or, using keystone v3 API endpoint:

{
"type": "ExistingCloud",
"auth_url": "http://localhost:5000/v3/",
"region_name": "RegionOne",
"endpoint_type": "public",
"admin": {
"username": "admin",
"password": "admin",
"user_domain_name": "admin",
"project_name": "admin",
"project_domain_name": "admin",
},
"https_insecure": False,
"https_cacert": "",
}

MODULE:
rally.deployment.engines.existing

LxcEngine [engine]

Deploy with other engines in lxc containers.

Sample configuration:

{
"type": "LxcEngine",
"provider": {
"type": "DummyProvider",
"credentials": [{"user": "root", "host": "example.net"}]
},
"distribution": "ubuntu",
"release": "raring",
"tunnel_to": ["10.10.10.10", "10.10.10.11"],
"start_lxc_network": "10.1.1.0/24",
"container_name_prefix": "devstack-node",
"containers_per_host": 16,
"start_script": "~/start.sh",
"engine": { ... }
}

MODULE:
rally.deployment.engines.lxc

FuelEngine [engine]

Deploy with FuelWeb.

Sample configuration:

{
"type": "FuelEngine",
"deploy_name": "Rally multinode 01",
"release": "Havana on CentOS 6.4",
"api_url": "http://10.20.0.2:8000/api/v1/",
"mode": "multinode",
"nodes": {
"controller": {"amount": 1, "filters": ["storage>80G"]},
"compute": {"amount": 1, "filters": ["storage>80G"]}
},
"net_provider": "nova_network",
"dns_nameservers": ["172.18.208.44", "8.8.8.8"],
"networks": {

"public": {
"cidr": "10.3.3.0/24",
"gateway": "10.3.3.1",
"ip_ranges": [["10.3.3.5", "10.3.3.254"]],
"vlan_start": 14
},

"floating": {
"cidr": "10.3.4.0/24",
"ip_ranges": [["10.3.4.5", "10.3.4.254"]],
"vlan_start": 14
}
}
}

MODULE:
rally.deployment.engines.fuel

MultihostEngine [engine]

Deploy multihost cloud with existing engines.

Sample configuration:

{
"type": "MultihostEngine",
"controller": {
"type": "DevstackEngine",
"provider": {
"type": "DummyProvider"
}
},
"nodes": [
{"type": "Engine1", "config": "Config1"},
{"type": "Engine2", "config": "Config2"},
{"type": "Engine3", "config": "Config3"},
]
}

If {controller_ip} is specified in configuration values, it will be
replaced with controller address taken from credential returned by
controller engine:

...
"nodes": [
{
"type": "DevstackEngine",
"local_conf": {
"GLANCE_HOSTPORT": "{controller_ip}:9292",
...

MODULE:
rally.deployment.engines.multihost

Server Providers [deployment]

LxcProvider [server provider]

Provide lxc container(s) on given host.

Sample configuration:
{
"type": "LxcProvider",
"distribution": "ubuntu",
"start_lxc_network": "10.1.1.0/24",
"containers_per_host": 32,
"tunnel_to": ["10.10.10.10"],
"forward_ssh": false,
"container_name_prefix": "rally-multinode-02",
"host_provider": {
"type": "ExistingServers",
"credentials": [{"user": "root", "host": "host.net"}]
}
}

MODULE:
rally.deployment.serverprovider.providers.lxc

VirshProvider [server provider]

Create VMs from prebuilt templates.

Sample configuration:

{
"type": "VirshProvider",
"connection": "alex@performance-01", # ssh connection to vms host
"template_name": "stack-01-devstack-template", # vm image template
"template_user": "ubuntu", # vm user to launch devstack
"template_password": "password" # vm password to launch devstack
}

MODULE:
rally.deployment.serverprovider.providers.virsh

CobblerProvider [server provider]

Creates servers via PXE boot from given cobbler selector.

Cobbler selector may contain a combination of fields
to select a number of system. It's user responsibility to provide selector
which selects something. Since cobbler stores servers password encrypted
the user needs to specify it configuration. All servers selected must have
the same password.

Sample configuration:

{
'type': 'CobblerProvider',
'host': '172.29.74.8',
'user': 'cobbler',
'password': 'cobbler',
'system_password': 'password'
'selector': {'profile': 'cobbler_profile_name', 'owners': 'user1'}
}

MODULE:
rally.deployment.serverprovider.providers.cobbler

ExistingServers [server provider]

Just return endpoints from its own configuration.

Sample configuration:

{
"type": "ExistingServers",
"credentials": [{"user": "root", "host": "localhost"}]
}

MODULE:
rally.deployment.serverprovider.providers.existing

OpenStackProvider [server provider]

Provide VMs using an existing OpenStack cloud.

Sample configuration:

{
"type": "OpenStackProvider",
"amount": 42
"user": "admin",
"tenant": "admin",
"password": "secret",
"auth_url": "http://example.com/",
"flavor_id": 2,
"image": {
"checksum": "75846dd06e9fcfd2b184aba7fa2b2a8d",
"url": "http://example.com/disk1.img",
"name": "Ubuntu Precise(added by rally)",
"format": "qcow2",
"userdata": "#cloud-config
disable_root: false"
}
}

MODULE:
rally.deployment.serverprovider.providers.openstack

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Contribute to Rally

Where to begin

Please take a look our Roadmap [https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0] to get information about our current work directions.

In case you have questions or want to share your ideas, be sure to contact us at the #openstack-rally IRC channel on irc.freenode.net.

If you are going to contribute to Rally, you will probably need to grasp a better understanding of several main design concepts used throughout our project (such as benchmark scenarios, contexts etc.). To do so, please read this article.

How to contribute

	You need a Launchpad [https://launchpad.net/] account and need to be joined to the OpenStack team [https://launchpad.net/openstack]. You can also join the Rally team [https://launchpad.net/rally] if you want to. Make sure Launchpad has your SSH key, Gerrit (the code review system) uses this.

	Sign the CLA as outlined in the account setup [http://docs.openstack.org/infra/manual/developers.html#development-workflow] section of the developer guide.

	Tell git your details:

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

	Install git-review. This tool takes a lot of the pain out of remembering commands to push code up to Gerrit for review and to pull it back down to edit it. It is installed using:

pip install git-review

Several Linux distributions (notably Fedora 16 and Ubuntu 12.04) are also starting to include git-review in their repositories so it can also be installed using the standard package manager.

	Grab the Rally repository:

git clone git@github.com:openstack/rally.git

	Checkout a new branch to hack on:

git checkout -b TOPIC-BRANCH

	Start coding

	Run the test suite locally to make sure nothing broke, e.g. (this will run py26/py27/pep8 tests):

tox

(NOTE: you should have installed tox<=1.6.1)

If you extend Rally with new functionality, make sure you have also provided unit and/or functional tests for it.

	Commit your work using:

git commit -a

Make sure you have supplied your commit with a neat commit message, containing a link to the corresponding blueprint / bug, if appropriate.

	Push the commit up for code review using:

git review -R

That is the awesome tool we installed earlier that does a lot of hard work for you.

	Watch your email or review site [http://review.openstack.org/], it will automatically send your code for a battery of tests on our Jenkins setup [http://jenkins.openstack.org/] and the core team for the project will review your code. If there are any changes that should be made they will let you know.

	When all is good the review site will automatically merge your code.

(This tutorial is based on: http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html)

Testing

Please, don’t hesitate to write tests ;)

Unit tests

Files: /tests/unit/*

The goal of unit tests is to ensure that internal parts of the code work properly.
All internal methods should be fully covered by unit tests with a reasonable mocks usage.

About Rally unit tests:

	All unit tests [http://en.wikipedia.org/wiki/Unit_testing] are located inside /tests/unit/*

	Tests are written on top of: testtools, fixtures and mock libs

	Tox [https://tox.readthedocs.org/en/latest/] is used to run unit tests

To run unit tests locally:

$ pip install tox
$ tox

To run py26, py27 or pep8 only:

$ tox -e <name>

#NOTE: <name> is one of py26, py27 or pep8

To get test coverage:

$ tox -e cover

#NOTE: Results will be in /cover/index.html

To generate docs:

$ tox -e docs

#NOTE: Documentation will be in doc/source/_build/html/index.html

Functional tests

Files: /tests/functional/*

The goal of functional tests [https://en.wikipedia.org/wiki/Functional_testing] is to check that everything works well together.
Functional tests use Rally API only and check responses without touching internal parts.

To run functional tests locally:

$ source openrc
$ rally deployment create --fromenv --name testing
$ tox -e cli

#NOTE: openrc file with OpenStack admin credentials

Output of every Rally execution will be collected under some reports root in
directory structure like: reports_root/ClassName/MethodName_suffix.extension
This functionality implemented in tests.functional.utils.Rally.__call__ method.
Use ‘gen_report_path’ method of ‘Rally’ class to get automatically generated file
path and name if you need. You can use it to publish html reports, generated
during tests.
Reports root can be passed throw environment variable ‘REPORTS_ROOT’. Default is
‘rally-cli-output-files’.

Rally CI scripts

Files: /tests/ci/*

This directory contains scripts and files related to the Rally CI system.

Rally Style Commandments

Files: /tests/hacking/

This module contains Rally specific hacking rules for checking commandments.

For more information about Style Commandments, read the OpenStack Style Commandments manual [http://docs.openstack.org/developer/hacking/].

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Rally OS Gates

Gate jobs

The OpenStack CI system uses the so-called “Gate jobs” to control merges of patched submitted for review on Gerrit. These Gate jobs usually just launch a set of tests – unit, functional, integration, style – that check that the proposed patch does not break the software and can be merged into the target branch, thus providing additional guarantees for the stability of the software.

Create a custom Rally Gate job

You can create a Rally Gate job for your project to run Rally benchmarks against the patchsets proposed to be merged into your project.

To create a rally-gate job, you should create a rally-jobs/ directory at the root of your project.

As a rule, this directory contains only {projectname}.yaml, but more scenarios and jobs can be added as well. This yaml file is in fact an input Rally task file specifying benchmark scenarios that should be run in your gate job.

To make {projectname}.yaml run in gates, you need to add “rally-jobs” to the “jobs” section of projects.yaml in openstack-infra/project-config.

Example: Rally Gate job for Glance

Let’s take a look at an example for the Glance [https://wiki.openstack.org/wiki/Glance] project:

Edit jenkins/jobs/projects.yaml:

- project:
 name: glance
 node: 'bare-precise || bare-trusty'
 tarball-site: tarballs.openstack.org
 doc-publisher-site: docs.openstack.org

 jobs:
 - python-jobs
 - python-icehouse-bitrot-jobs
 - python-juno-bitrot-jobs
 - openstack-publish-jobs
 - translation-jobs
 - rally-jobs

Also add gate-rally-dsvm-{projectname} to zuul/layout.yaml:

- name: openstack/glance
 template:
 - name: merge-check
 - name: python26-jobs
 - name: python-jobs
 - name: openstack-server-publish-jobs
 - name: openstack-server-release-jobs
 - name: periodic-icehouse
 - name: periodic-juno
 - name: check-requirements
 - name: integrated-gate
 - name: translation-jobs
 - name: large-ops
 - name: experimental-tripleo-jobs
 check:
 - check-devstack-dsvm-cells
 - gate-rally-dsvm-glance
 gate:
 - gate-devstack-dsvm-cells
 experimental:
 - gate-grenade-dsvm-forward

To add one more scenario and job, you need to add {scenarioname}.yaml file here, and gate-rally-dsvm-{scenarioname} to projects.yaml.

For example, you can add myscenario.yaml to rally-jobs directory in your project and then edit jenkins/jobs/projects.yaml in this way:

- project:
 name: glance
 github-org: openstack
 node: bare-precise
 tarball-site: tarballs.openstack.org
 doc-publisher-site: docs.openstack.org

 jobs:
 - python-jobs
 - python-havana-bitrot-jobs
 - openstack-publish-jobs
 - translation-jobs
 - rally-jobs
 - 'gate-rally-dsvm-{name}':
 name: myscenario

Finally, add gate-rally-dsvm-myscenario to zuul/layout.yaml:

- name: openstack/glance
 template:
 - name: python-jobs
 - name: openstack-server-publish-jobs
 - name: periodic-havana
 - name: check-requirements
 - name: integrated-gate
 check:
 - check-devstack-dsvm-cells
 - check-tempest-dsvm-postgres-full
 - gate-tempest-dsvm-large-ops
 - gate-tempest-dsvm-neutron-large-ops
 - gate-rally-dsvm-myscenario

It is also possible to arrange your input task files as templates based on jinja2. Say, you want to set the image names used throughout the myscenario.yaml task file as a variable parameter. Then, replace concrete image names in this file with a variable:

...

NovaServers.boot_and_delete_server:
 -
 args:
 image:
 name: {{image_name}}
 ...

NovaServers.boot_and_list_server:
 -
 args:
 image:
 name: {{image_name}}
 ...

and create a file named myscenario_args.yaml that will define the parameter values:

 image_name: "^cirros.*uec$"

this file will be automatically used by Rally to substitute the variables in myscenario.yaml.

Plugins & Extras in Rally Gate jobs

Along with scenario configs in yaml, the rally-jobs directory can also contain two subdirectories:

	plugins: Plugins needed for your gate job;

	extra: auxiliary files like bash scripts or images.

Both subdirectories will be copied to ~/.rally/ before the job gets started.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Request New Features

To request a new feature, you should create a document similar to other feature requests and then contribute it to the doc/feature_request directory of the Rally repository (see the How-to-contribute tutorial).

If you don’t have time to contribute your feature request via gerrit, please contact Boris Pavlovic (boris@pavlovic.me)

Active feature requests:

	Running Tempest using custom concurrency

	Capture Logs from services

	Check queue perfdata

	Ability to compare results between task

	Distributed load generation

	Explicitly specify existing users for scenarios

	Historical performance data

	Enhancements to installation script: --version and --uninstall

	Installation script: --pypi-mirror, --package-mirror and --venv-mirror

	Launch Specific Benchmark(s)

	Using multi scenarios to generate load

	Add support of persistence benchmark environment

	Production read cleanups

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Running Tempest using custom concurrency

Use case

User might want to use specific concurrency for running tests based on his
deployment and available resources.

Problem description

“rally verify start” command does not allow to specify concurrency
for tempest tests. And they always run using concurrency equal
to amount of CPU cores.

Possible solution

	Add --concurrency option to “rally verify start” command.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Capture Logs from services

Use case

A developer is executing various task and would like to capture logs as
well as test results.

Problem description

In case of errors it is quite hard to debug what happened.

Possible solution

	Add special context that can capture the logs from tested services.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Check queue perfdata

Use case
————
Sometimes OpenStack services use common messaging system very prodigally. For example neutron metering agent sending all database table data on new object creation i.e https://review.openstack.org/#/c/143672/. It cause to neutron degradation and other obvious problems.
It will be nice to have a way to track messages count and messages size in queue during tests/benchmarks.

Problem description
—————————
Heavy usage of queue isn’t checked.

Possible solution
————————
* Before running tests/benchmarks start process which will connect to queue topics and measure messages count, size and other data which we need.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Ability to compare results between task

Use case

During the work on performance it’s essential to be able to compare results of
similar task before and after change in system.

Problem description

There is no command to compare two or more tasks and get tables and graphs.

Possible solution

	Add command that accepts 2 tasks UUID and prints graphs that compares result

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Distributed load generation

Use Case

Some OpenStack projects (Marconi, MagnetoDB) require a real huge load,
like 10-100k request per second for benchmarking.

To generate such huge load Rally have to create load from different
servers.

Problem Description

	Rally can’t generate load from different servers

	Result processing can’t handle big amount of data

	There is no support for chunking results

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Explicitly specify existing users for scenarios

Use Case

Rally allows to reuse existing users for scenario runs. And we should be able
to use only specified set of existing users for specific scenarios.

Problem Description

For the moment if used deployment with existing users then Rally chooses
user for each scenario run randomly. But there are cases when we may want
to use one scenario with one user and another with different one specific user.
Main reason for it is in different set of resources that each user has and
those resources may be required for scenarios. Without this feature Rally user
is forced to make all existing users similar and have all required resources
set up for all scenarios he uses. But it is redundant.

Possible solution

	Make it possible to use explicitly existing_users context

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Historical performance data

Use case

OpenStack is really rapidly developed. Hundreds of patches are merged daily
and it’s really hard to track how performance is changed during time.
It will be nice to have a way to track performance of major functionality
of OpenStack running periodically rally task and building graphs that represent
how performance of specific method is changed during the time.

Problem description

There is no way to bind tasks

Possible solution

	Add grouping for tasks

	Add command that creates historical graphs

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Enhancements to installation script: --version and --uninstall

Use case

User might wish to control which rally version is installed or even purge
rally from the machine completely.

Problem description

	Installation script doesn’t allow to choose version.

	No un-install support.

Possible solution

	Add --version option to installation script.

	Add --uninstall option to installation script or create an
un-installation script

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Installation script: --pypi-mirror, --package-mirror and --venv-mirror

Use case

Installation is pretty easy when there is an Internet connection available.
And there is surely a number of OpenStack uses when whole environment is isolated.
In this case, we need somehow specify where installation script should take
required libs and packages.

Problem description

	Installation script can’t work without direct Internet connection

Possible solution #1

	Add --pypi-mirror option to installation script.

	Add --package-mirror option to installation script.

	Add --venv-mirror option to installation script.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Launch Specific Benchmark(s)

Use case

A developer is working on a feature that is covered by one or more specific
benchmarks/scenarios. He/she would like to execute a rally task with an
existing task template file (yaml or json) indicating exactly which
benchmark(s) will be executed.

Problem description

When executing a task with a template file in Rally, all benchmarks are
executed without the ability to specify one or a set of benchmarks the user
would like to execute.

Possible solution

	Add optional flag to rally task start command to specify one or more

benchmarks to execute as part of that test run.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Using multi scenarios to generate load

Use Case

Rally should be able to generate real life load. Simultaneously create load
on different components of OpenStack, e.g. simultaneously booting VM, uploading
image and listing users.

Problem Description

At the moment Rally is able to run only 1 scenario per benchmark.
Scenario are quite specific (e.g. boot and delete VM for example) and can’t
actually generate real life load.

Writing a lot of specific benchmark scenarios that will produce more real life
load will produce mess and a lot of duplication of code.

Possible solution

	Extend Rally task benchmark configuration in such way to support passing
multiple benchmark scenarios in single benchmark context

	Extend Rally task output format to support results of multiple scenarios in
single benchmark separately.

	Extend rally task plot2html and rally task detailed to show results
separately for every scenario.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Add support of persistence benchmark environment

Use Case

To benchmark many of operations like show, list, detailed you need to have
already these resource in cloud. So it will be nice to be able to create
benchmark environment once before benchmarking. So run some amount of
benchmarks that are using it and at the end just delete all created resources
by benchmark environment.

Problem Description

Fortunately Rally has already a mechanism for creating benchmark environment,
that is used to create load. Unfortunately it’s atomic operation:
(create environment, make load, delete environment).
This should be split to 3 separated steps.

Possible solution

	Add new CLI operations to work with benchmark environment:
(show, create, delete, list)

	Allow task to start against benchmark environment (instead of deployment)

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Request New Features

Production read cleanups

Use Case

Rally should delete in any case all resources that it created during benchmark.

Problem Description

	(implemented) Deletion rate limit

You can kill cloud by deleting too many objects simultaneously, so deletion
rate limit is required

	(implemented) Retry on failures

There should be few attempts to delete resource in case of failures

	(implemented) Log resources that failed to be deleted

We should log warnings about all non deleted resources. This information
should include UUID of resource, it’s type and project.

	(implemented) Pluggable

It should be simple to add new cleanups adding just plugins somewhere.

	Disaster recovery

Rally should use special name patterns, to be able to delete resources
in such case if something went wrong with server that is running rally. And
you have just new instance (without old rally db) of rally on new server.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Project Info

Maintainers

Project Team Lead (PTL)

	Contact
	Area of interest

	
Boris Pavlovic

boris-42 (irc)

boris@pavlovic.me

	
	Road Map

	Release management

	Community management

	Core team management

	Chief Architect

If you would like to refactor whole Rally or have UX/community/other
issues please contact me.

Project Core maintainers

	Contact
	Area of interest

	
Alexander Maretskiy

amaretskiy (irc)

amaretskiy@mirantis.com

	
	Rally reports

	Front-end

	
Andrey Kurilin

andreykurilin (irc)

andr.kurilin@gmail.com

	
	Rally-Tempest Integration

	Rally verify

	Nova plugins

	
Chris St. Pierre

stpierre (irc)

cstpierr@cisco.com

	
	Rally task & benchmark

	Bash guru ;)

	
Kun Huang

kun_huang (irc)

gareth.huang@huawei.com

	
	Rally task & benchmark

	
Li Yingjun

liyingjun (irc)

yingjun.li@kylin-cloud.com

	
	Rally task & benchmark

	
Pavel Boldin

pboldin (irc)

pboldin@mirantis.com

	
	VM workloads

	
Roman Vasilets

rvasilets (irc)

rvasilets@mirantis.com

	
	Rally task & benchmark

	
Sergey Skripnick

redixin (irc)

sskripnick@mirantis.com

	
	Rally CI/CD

	Rally deploy

	Automation of everything

	
Yair Fried

yfried (irc)

yfried@redhat.com

	
	Rally-Tempest integration

	Rally task & benchmark

All cores from this list are reviewing all changes that are proposed to Rally.
To avoid duplication of efforts, please contact them before starting work on
your code.

Plugin Core reviewers

	Contact
	Area of interest

	
Ivan Kolodyazhny

e0ne (irc)

e0ne@e0ne.info

	
	Cinder plugins

	
Nikita Konovalov

NikitaKonovalov (irc)

nkonovalov@mirantis.com

	
	Sahara plugins

	
Sergey Kraynev

skraynev (irc)

skraynev@mirantis.com

	
	Heat plugins

All cores from this list are responsible for their component plugins.
To avoid duplication of efforts, please contact them before starting working
on your own plugins.

Useful links

	Source code [https://github.com/openstack/rally]

	Rally road map [https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0]

	Project space [http://launchpad.net/rally]

	Bugs [https://bugs.launchpad.net/rally]

	Patches on review [https://review.openstack.org/#/q/status:open+rally,n,z]

	Meeting logs [http://eavesdrop.openstack.org/meetings/rally/2015/] (server: irc.freenode.net, channel: #openstack-meeting)

	Release meeting logs [http://eavesdrop.openstack.org/meetings/rallyrelease/2015/] (server: irc.freenode.net, channel: #openstack-rally)

	IRC logs [http://irclog.perlgeek.de/openstack-rally] (server: irc.freenode.net, channel: #openstack-rally)

Where can I discuss and propose changes?

	Our IRC channel: #openstack-rally on irc.freenode.net;

	Weekly Rally team meeting (in IRC): #openstack-meeting on irc.freenode.net, held on Mondays at 14:00 UTC;

	Weekly release meeting (in IRC): #openstack-rally on irc.freenode.net, held on Mondays at 13:00 UTC;

	OpenStack mailing list: openstack-dev@lists.openstack.org (see subscription and usage instructions [http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev]);

	Rally team on Launchpad [https://launchpad.net/rally]: Answers/Bugs/Blueprints.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

Release Notes

	All release notes

	Rally v0.1.2

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

All release notes

	Rally v0.0.1

	Rally v0.0.2

	Rally v0.0.3

	Rally v0.0.4

	Rally v0.1.0

	Rally v0.1.1

	Rally v0.1.2

	Rally v0.1.2

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.0.1

Information

	Commits
	1039

	Bug fixes
	0

	Dev cycle
	547 days

	Release date
	26/Jan/2015

Details

Rally is awesome tool for testing verifying and benchmarking OpenStack clouds.

A lot of people started using Rally in their CI/CD so Rally team should provide
more stable product with clear strategy of deprecation and upgrades.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.0.2

Information

	Commits
	100

	Bug fixes
	18

	Dev cycle
	45 days

	Release date
	12/Mar/2015

Details

This release contains new features, new benchmark plugins, bug fixes,
various code and API improvements.

New Features

	rally task start –abort-on-sla-failure

Stopping load before things go wrong.
Load generation will be interrupted if SLA criteria stop passing.

	Rally verify command supports multiple Tempest sources now.

	python34 support

	postgres DB backend support

API changes

	[new] rally [deployment | verify | task] use subcommand

It should be used instead of root command rally use

	[new] Rally as a Lib API

To avoid code duplication between Rally as CLI tool and Rally as a Service
we decide to make Rally as a Lib as a common part between these 2 modes.

Rally as a Service will be a daemon that just maps HTTP request to Rally
as a Lib API.

	[deprecated] rally use CLI command

	[deprecated] Old Rally as a Lib API

Old Rally API was quite mixed up so we decide to deprecate it

Plugins

	Benchmark Scenario Runners:

[improved] Improved algorithm of generation load in constant runner

Before we used processes to generate load, now it creates pool of
processes (amount of processes is equal to CPU count) after that in
each process use threads to generate load. So now you can easily
generate load of 1k concurrent scenarios.

[improved] Unify code of constant and rps runners

[interface] Added abort() to runner’s plugin interface

New method abort() is used to immediately interrupt execution.

	Benchmark Scenarios:

[new] DesignateBasic.create_and_delete_server

[new] DesignateBasic.create_and_list_servers

[new] DesignateBasic.list_servers

[new] MistralWorkbooks.list_workbooks

[new] MistralWorkbooks.create_workbook

[new] Quotas.neutron_update

[new] HeatStacks.create_update_delete_stack

[new] HeatStacks.list_stacks_and_resources

[new] HeatStacks.create_suspend_resume_delete_stac

[new] HeatStacks.create_check_delete_stack

[new] NeutronNetworks.create_and_delete_routers

[new] NovaKeypair.create_and_delete_keypair

[new] NovaKeypair.create_and_list_keypairs

[new] NovaKeypair.boot_and_delete_server_with_keypair

[new] NovaServers.boot_server_from_volume_and_live_migrate

[new] NovaServers.boot_server_attach_created_volume_and_live_migrate

[new] CinderVolumes.create_and_upload_volume_to_image

[fix] CinderVolumes.create_and_attach_volume

Pass optional **kwargs only to create server command

[fix] GlanceImages.create_image_and_boot_instances

Pass optional **kwargs only to create server command

[fix] TempestScenario.* removed stress cleanup.

Major issue is that tempest stress cleanup cleans whole OpenStack.
This is very dangerous, so it’s better to remove it and leave some
extra resources.

[improved] NovaSecGroup.boot_and_delete_server_with_secgroups

Add optional **kwargs that are passed to boot server comment

	Benchmark Context:

[new] stacks

Generates passed amount of heat stacks for all tenants.

[new] custom_image

Prepares images for benchmarks in VMs.

To Support generating workloads in VMs by existing tools like: IPerf,
Blogbench, HPCC and others we have to have prepared images, with
already installed and configured tools.

Rally team decide to generate such images on fly from passed to avoid
requirements of having big repository with a lot of images.

This context is abstract context that allows to automate next steps:

	runs VM with passed image (with floating ip and other stuff)

	execute abstract method that has access to VM

	snapshot this image

In future we are going to use this as a base for making context that
prepares images.

[improved] allow_ssh

Automatically disable it if security group are disabled in neutron.

[improved] keypair

Key pairs are stored in “users” space it means that accessing keypair
from scenario is simpler now:

self.context[“user”][“keypair”][“private”]

[fix] users

Pass proper EndpointType for newly created users

[fix] sahara_edp

The Job Binaries data should be treated as a binary content

	Benchmark SLA:

[interface] SLA calculations is done in additive way now

Resolves scale issues, because now we don’t need to have whole
array of iterations in memory to process SLA.

This is required to implement –abort-on-sla-failure feature

[all] SLA plugins were rewritten to implement new interface

Bug fixes

18 bugs were fixed, the most critical are:

	Fix rally task detailed –iterations-data

It didn’t work in case of missing atomic actions. Such situation can occur
if scenario method raises exceptions

	Add user-friendly message if the task cannot be deleted

In case of trying to delete task that is not in “finished” status users get
traces instead of user-friendly message try to run it with –force key.

	Network context cleanups networks properly now

Documentation

	Image sizes are fixed

	New tutorial in “Step by Step” relate to –abort-on-sla-failure

	Various fixes

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.0.3

Information

	Commits
	53

	Bug fixes
	14

	Dev cycle
	33 days

	Release date
	14/Apr/2015

Details

This release contains new features, new benchmark plugins, bug fixes,
various code and API improvements.

New Features & API changes

	Add the ability to specify versions for clients in benchmark scenarios

You can call self.clients(“glance”, “2”) and get any client for
specific version.

	Add API for tempest uninstall

$ rally-manage tempest uninstall
removes fully tempest for active deployment

	Add a –uuids-only option to rally task list

$ rally task list –uuids-only # returns list with only task uuids

	Adds endpoint to –fromenv deployment creation

$ rally deployment create –fromenv
recognizes standard OS_ENDPOINT environment variable

	Configure SSL per deployment

Now SSL information is deployment specific not Rally specific and
rally.conf option is deprecated

Like in this sample
https://github.com/openstack/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-L12

Specs

	[spec] Proposal for new task input file format

This spec describes new task input format that will allow us to generate
multi scenario load which is crucial for HA and more real life testing:

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/new_rally_input_task_format.rst

Plugins

	Benchmark Scenario Runners:

	Add a maximum concurrency option to rps runner

To avoid running to heavy load you can set ‘concurrency’ to configuration
and in case if cloud is not able to process all requests it won’t start
more parallel requests then ‘concurrency’ value.

	Benchmark Scenarios:

[new] CeilometerAlarms.create_alarm_and_get_history

[new] KeystoneBasic.get_entities

[new] EC2Servers.boot_server

[new] KeystoneBasic.create_and_delete_service

[new] MuranoEnvironments.list_environments

[new] MuranoEnvironments.create_and_delete_environment

[new] NovaServers.suspend_and_resume_server

[new] NovaServers.pause_and_unpause_server

[new] NovaServers.boot_and_rebuild_server

[new] KeystoneBasic.create_and_list_services

[new] HeatStacks.list_stacks_and_events

[improved] VMTask.boot_runcommand_delete

restore ability to use fixed IP and floating IP to connect to VM
via ssh

[fix] NovaServers.boot_server_attach_created_volume_and_live_migrate

Kwargs in nova scenario were wrongly passed

	Benchmark SLA:

	[new] aborted_on_sla

This is internal SLA criteria, that is added if task was aborted

	[new] something_went_wrong

This is internal SLA criteria, that is added if something went wrong,
context failed to create or runner raised some exceptions

Bug fixes

14 bugs were fixed, the most critical are:

	Set default task uuid to running task. Before it was set only after
task was fully finished.

	The “rally task results” command showed a disorienting “task not found”
message for a task that is currently running.

	Rally didn’t know how to reconnect to OpenStack in case if token
expired.

Documentation

	New tutorial task templates

https://rally.readthedocs.org/en/latest/tutorial/step_5_task_templates.html

	Various fixes

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.0.4

Information

	Commits
	87

	Bug fixes
	21

	Dev cycle
	30 days

	Release date
	14/May/2015

Details

This release contains new features, new benchmark plugins, bug fixes, various code and API improvements.

New Features & API changes

	Rally now can generate load with users that already exist

Now one can use Rally for benchmarking OpenStack clouds that are using LDAP, AD or any other read-only keystone backend where it is not possible to create any users. To do this, one should set up the “users” section of the deployment configuration of the ExistingCloud type. This feature also makes it safer to run Rally against production clouds: when run from an isolated group of users, Rally won’t affect rest of the cloud users if something goes wrong.

	New decorator @osclients.Clients.register can add new OpenStack clients at runtime

It is now possible to add a new OpenStack client dynamically at runtime. The added client will be available from osclients.Clients at the module level and cached. Example:

>>> from rally import osclients
>>> @osclients.Clients.register("supernova")
... def another_nova_client(self):
... from novaclient import client as nova
... return nova.Client("2", auth_token=self.keystone().auth_token,
... **self._get_auth_info(password_key="key"))
...
>>> clients = osclients.Clients.create_from_env()
>>> clients.supernova().services.list()[:2]
[<Service: nova-conductor>, <Service: nova-cert>]

	Assert methods now available for scenarios and contexts

There is now a new FunctionalMixin class that implements basic unittest assert methods. The base.Context and base.Scenario classes inherit from this mixin, so now it is possible to use base.assertX() methods in scenarios and contexts.

	Improved installation script

The installation script has been almost completely rewritten. After this change, it can be run from an unprivileged user, supports different database types, allows to specify a custom python binary, always asks confirmation before doing potentially dangerous actions, automatically install needed software if run as root, and also automatically cleans up the virtualenv and/or the downloaded repository if interrupted.

Specs & Feature requests

	[Spec] Reorder plugins

The spec describes how to split Rally framework and plugins codebase to make it simpler for newbies to understand how Rally code is organized and how it works.

	[Feature request] Specify what benchmarks to execute in task

This feature request proposes to add the ability to specify benchmark(s) to be executed when the user runs the rally task start command. A possible solution would be to add a special flag to the rally task start command.

Plugins

	Benchmark Scenario Runners:

	Add limits for maximum Core usage to constant and rps runners

The new ‘max_cpu_usage’ parameter can be used to avoid possible 100% usage of all available CPU cores by reducing the number of CPU cores available for processes started by the corresponding runner.

	Benchmark Scenarios:

	[new] KeystoneBasic.create_update_and_delete_tenant

	[new] KeystoneBasic.create_user_update_password

	[new] NovaServers.shelve_and_unshelve_server

	[new] NovaServers.boot_and_associate_floating_ip

	[new] NovaServers.boot_lock_unlock_and_delete

	[new] NovaHypervisors.list_hypervisors

	[new] CeilometerSamples.list_samples

	[new] CeilometerResource.get_resources_on_tenant

	[new] SwiftObjects.create_container_and_object_then_delete_all

	[new] SwiftObjects.create_container_and_object_then_download_object

	[new] SwiftObjects.create_container_and_object_then_list_objects

	[new] MuranoEnvironments.create_and_deploy_environment

	[new] HttpRequests.check_random_request

	[new] HttpRequests.check_request

	[improved] NovaServers live migrate benchmarks

add ‘min_sleep’ and ‘max_sleep’ parameters to simulate a pause between VM booting and running live migration

	[improved] NovaServers.boot_and_live_migrate_server

add a usage sample to samples/tasks

	[improved] CinderVolumes benchmarks

support size range to be passed to the ‘size’ argument as a dictionary
{“min”: <minimum_size>, “max”: <maximum_size>}

	Benchmark Contexts:

	[new] MuranoPackage

This new context can upload a package to Murano from some specified path.

	[new] CeilometerSampleGenerator

Context that can be used for creating samples and collecting resources for benchmarks in a list.

	Benchmark SLA:

	[new] outliers

This new SLA checks that the number of outliers (calculated from the mean and standard deviation of the iteration durations) does not exceed some maximum value. The SLA is highly configurable: the parameters used for outliers threshold calculation can be set by the user.

Bug fixes

21 bugs were fixed, the most critical are:

	Make it possible to use relative imports for plugins that are outside of rally package.

	Fix heat stacks cleanup by deleting them only 1 time per tenant (get rid of “stack not found” errors in logs).

	Fix the wrong behavior of ‘rally task detailed –iterations-data’ (it lacked the iteration info before).

	Fix security groups cleanup: a security group called “default”, created automatically by Neutron, did not get deleted for each tenant.

Other changes

	Streaming algorithms that scale

This release introduces the common/streaming_algorithms.py module. This module is going to contain implementations of benchmark data processing algorithms that scale: these algorithms do not store exhaustive information about every single benchmark iteration duration processed. For now, the module contains implementations of algorithms for computation of mean & standard deviation.

	Coverage job to check that new patches come with unit tests

Rally now has a coverage job that checks that every patch submitted for review does not decrease the number of lines covered by unit tests (at least too much). This job allows to mark most patches with no unit tests with ‘-1’.

	Splitting the plugins code (Runners & SLA) into common/openstack plugins

According to the spec “Reorder plugins” (see above), the plugins code for runners and SLA has been moved to the plugins/common/ directory. Only base classes now remain in the benchmark/ directory.

Documentation

	Various fixes

	Remove obsolete .rst files (deploy_engines.rst / server_providers.rst / ...)

	Restructure the docs files to make them easier to navigate through

	Move the chapter on task templates to the 4th step in the tutorial

	Update the information about meetings (new release meeting & time changes)

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.1.0

Information

	Commits
	355

	Bug fixes
	90

	Dev cycle
	132 days

	Release date
	25/September/2015

Details

This release contains new features, new 42 plugins, 90 bug fixes,
various code and API improvements.

New Features & API changes

	Improved installation script

	Add parameters:
	--develop parameter to install rally in editable (develop) mode

	--no-color to switch off output colorizing
useful for automated output parsing and terminals that don’t
support colors.

	Puts rally.conf under virtualenv etc/rally/ so you can have several
rally installations in virtualenv

	Many fixes related to access of different file, like: rally.conf,
rally db file in case of sqlite

	Update pip before Rally installation

	Fix reinstallation

	Separated Rally plugins & framework

Now plugins are here:
https://github.com/openstack/rally/tree/master/rally/plugins

Plugins are as well separated common/* for common plugins
that can be use no matter what is tested and OpenStack related
plugins

	New Rally Task framework

	All plugins has the same Plugin base:
rally.common.plugin.pluing.Plugin They have the same mechanisms for:
discovering, providing information based on docstrings, and in future
they will use the same deprecation/rename mechanism.

	Some of files are moved:

	rally/benchmark -> rally/task

This was done to unify naming of rally task command and
actually code that implements it.

	rally/benchmark/sla/base.py -> rally/task/sla.py

	rally/benchmark/context/base.py -> rally/task/context.py

	rally/benchmark/scenarios/base.py -> rally/task/scenario.py

	rally/benchmark/runners/base.py -> rally/task/runner.py

	rally/benchmark/scenarios/utils.py -> rally/task/utils.py

This was done to:

	avoid doing rally.benchamrk.scenarios import base as scenario_base

	remove one level of nesting

	simplify framework structure

	Some of classes and methods were renamed

	Plugin configuration:

	context.context() -> context.configure()

	scenario.scenario() -> scenario.configure()

	Introduced runner.configure()

	Introduced sla.configure()

This resolves 3 problems:

	Unifies configuration of different types of plugins

	Simplifies plugin interface

	
	Looks nice with new modules path:

	>>> from rally.task import scenario
>>> @scenario.configure()

	Atomic Actions were changed:

	New rally.task.atomic module

This allow us in future to reuse atomic actions in Context plugins

	Renames:

rally.benchmark.scenarios.base.AtomicAction
-> rally.task.atomic.ActionTimer

rally.benchmark.scenarios.base.atomic_action()
-> rally.task.atomic.action_timer()

	Context plugins decide how to map their data for scenario

Now Context.map_for_scenario method can be override to decide
how to pass context object to each iteration of scenario.

	Samples of NEW vs OLD context, sla, scenario and runner plugins:

	Context

Old
from rally.benchmark.context import base

@base.context(name="users", order=100)
class YourContext(base.Context):

 def setup(self):
 # ...

 def cleanup(self):
 # ...

New
from rally.task import context

@context.configure(name="users", order=100)
class YourContext(context.Context):

 def setup(self):
 # ...

 def cleanup(self):
 # ...

 def map_for_scenario(self):
 # Maps context object to the scenario context object
 # like context["users"] -> context["user"] and so on.

	Scenario

Old Scenario

from rally.benchmark.scenarios import base
from rally.benchmark import validation

class ScenarioPlugin(base.Scenario):

 @base.scenario()
 def some(self):
 self._do_some_action()

 @base.atomic_action_timer("some_timer")
 def _do_some_action(self):
 # ...

New Scenario

from rally.task import atomic
from rally.task import scenario
from rally.task import validation

OpenStack scenario has different base now:
rally.plugins.openstack.scenario.OpenStackScenario
class ScenarioPlugin(scenario.Scenario):

 @scenario.configure()
 def some(self):
 self._do_some_action()

 @atomic.action_timer("some_action")
 def _do_some_action(self):
 # ...

	Runner

Old

from rally.benchmark.runners import base

class SomeRunner(base.ScenarioRunner):

 __execution_type__ = "some_runner"

 def _run_scenario(self, cls, method_name, context, args)
 # Load generation

 def abort(self):
 # Method that aborts load generation

New

from rally.task import runner

@runner.configure(name="some_runner")
class SomeRunner(runner.ScenarioRunner):

 def _run_scenario(self, cls, method_name, context, args)
 # Load generation

 def abort(self):
 # Method that aborts load generation

	SLA

Old

from rally.benchmark import sla

class FailureRate(sla.SLA):
 # ...

New

from rally.task import sla

@sla.configure(name="failure_rate")
class FailureRate(sla.SLA):
 # ...

	Rally Task aborted command

Finally you can gracefully shutdown running task by calling:

rally task abort <task_uuid>

	Rally CLI changes

	[add] rally --plugin-paths specify the list of directories with plugins

	[add] rally task report --junit - generate a JUnit report
This allows users to feed reports to tools such as Jenkins.

	[add] rally task abort - aborts running Rally task
when run with the --soft key, the rally task abort command is
waiting until the currently running subtask is finished, otherwise the
command interrupts subtask immediately after current scenario iterations
are finished.

	[add] rally plugin show prints detailed information about plugin

	[add] rally plugin list prints table with rally plugin names and titles

	[add] rally verify genconfig generates tempest.conf without running it.

	[add] rally verify install install tempest for specified deployment

	[add] rally verify reinstall removes tempest for specified deployment

	[add] rally verify uninstall uninstall tempest of specified deployment

	[fix] rally verify start --no-use –no-use was always turned on

	[remove] rally use now each command has subcommand use

	[remove] rally info

	[remove] rally-manage tempest now it is covered by rally verify

	New Rally task reports

	New code is based on OOP style which is base step to make plugable Reports

	Reports are now generated for only one iteration over the resulting data
which resolves scalability issues when we are working with large
amount of iterations.

	New Load profiler plot that shows amount of iterations that are working
in parallel

	Failed iterations are shown as a red areas on stacked are graphic.

Non backward compatible changes

	[remove] rally use cli command

	[remove] rally info cli command

	[remove] --uuid parameter from rally deployment <any>

	[remove --deploy-id parameter from:
rally task <any>, rally verify <any>, rally show <any>

Specs & Feature requests

[feature request] Explicitly specify existing users for scenarios

[feature request] Improve install script and add –unistall and –version

[feature request] Allows specific repos & packages in install-rally.sh

[feature request] Add abbility to caputre logs from tested services

[feature request] Check RPC queue perfdata

[spec] Refactoring Rally cleanup

[spec] Consistent resource names

Plugins

	Scenarios:

[new] CinderVolumes.create_volume_backup

[new] CinderVolumes.create_and_restore_volume_backup

[new] KeystoneBasic.add_and_remove_user_role

[new] KeystoneBasic.create_and_delete_role

[new] KeystoneBasic.create_add_and_list_user_roles

[new] FuelEnvironments.list_environments

[new] CinderVolumes.modify_volume_metadata

[new] NovaServers.boot_and_delete_multiple_servers

[new] NeutronLoadbalancerV1.create_and_list_pool

[new] ManilaShares.list_shares

[new] CeilometerEvents.create_user_and_get_event

[new] CeilometerEvents.create_user_and_list_event_types

[new] CeilometerEvents.create_user_and_list_events

[new] CeilometerTraits.create_user_and_list_trait_descriptions

[new] CeilometerTraits.create_user_and_list_traits

[new] NeutronLoadbalancerV1.create_and_delete_pools

[new] NeutronLoadbalancerV1.create_and_update_pools

[new] ManilaShares.create_and_delete_share

[new] ManilaShares.create_share_network_and_delete

[new] ManilaShares.create_share_network_and_list

[new] HeatStacks.create_and_delete_stack

[new] ManilaShares.list_share_servers

[new] HeatStacks.create_snapshot_restore_delete_stack

[new] KeystoneBasic.create_and_delete_ec2credential

[new] KeystoneBasic.create_and_list_ec2credentials

[new] HeatStacks.create_stack_and_scale

[new] ManilaShares.create_security_service_and_delete

[new] KeystoneBasic.create_user_set_enabled_and_delete

[new] ManilaShares.attach_security_service_to_share_network

[new] IronicNodes.create_and_delete_node

[new] IronicNodes.create_and_list_node

[new] CinderVolumes.create_and_list_volume_backups

[new] NovaNetworks.create_and_list_networks

[new] NovaNetworks.create_and_delete_network

[new] EC2Servers.list_servers

[new] VMTasks.boot_runcommand_delete_custom_imagea

[new] CinderVolumes.create_and_update_volume

	Contexts:

[new] ManilaQuotas

Add context for setting up Manila quotas:
shares, gigabytes, snapshots, snapshot_gigabytes, share_networks

[new] ManilaShareNetworks

Context for share networks that will be used in case of usage
deployment with existing users. Provided share networks via context
option “share_networks” will be balanced between all share creations
of scenarios.

[new] Lbaas

Context to create LBaaS-v1 resources

[new] ImageCommandCustomizerContext

Allows image customization using side effects of a command execution.
E.g. one can install an application to the image and use these image
for ‘boot_runcommand_delete’ scenario afterwards.

[new] EC2ServerGenerator

Context that creates servers using EC2 api

[new] ExistingNetwork

This context lets you use existing networks that have already been
created instead of creating new networks with Rally. This is useful
when, for instance, you are using Neutron with a dumb router that is
not capable of creating new networks on the fly.

	SLA:

[remove] max_failure_rate - use failure_rate instead

Bug fixes

90 bugs were fixed, the most critical are:

	Many fixes related that fixes access of rally.conf and DB files

	Incorrect apt-get “-yes” parameter in install_rally.sh script

	Rally bash completion doesn’t exist in a virtualenv

	Rally show networks CLI command worked only with nova networks

	RPS runner was not properly generating load

	Check is dhcp_agent_scheduler support or not in network cleanup

	NetworkContext doesn’t work with Nova V2.1

	Rally task input file was not able to use jinja2 include directive

	Rally in docker image was not able to

	Rally docker image didn’t contain samples

	Do not update the average duration when iteration failed

Documentation

	Add plugin reference page

Rally Plugins Reference page page contains a
full list with

	Add maintainers section on project info page

Rally Maintainers section contains information
about core contributors of OpenStack Rally their responsibilities and
contacts. This will help us to make our community more transparent and open
for newbies.

	Added who is using section in docs

	Many small fixes

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.1.1

Information

	Commits
	32

	Bug fixes
	9

	Dev cycle
	11 days

	Release date
	6/October/2015

Details

This release contains new features, new 6 plugins, 9 bug fixes,
various code and API improvements.

New Features

	Rally verify generates proper tempest.conf file now

Improved script that generates tempest.conf, now it works out of box for
most of the clouds and most of Tempest tests will pass without hacking it.

	Import Tempest results to Rally DB

rally verify import command allows you to import already existing Tempest
results and work with them as regular “rally verify start” results:
generate HTML/CSV reports & compare different runs.

API Changes

Rally CLI changes

	[add] rally verify import imports raw Tempest results to Rally

Specs & Feature requests

There is no new specs and feature requests.

Plugins

	Scenarios:

[new] NeutronNetworks.create_and_list_floating_ips

[new] NeutronNetworks.create_and_delete_floating_ips

[new] MuranoPackages.import_and_list_packages

[new] MuranoPackages.import_and_delete_package

[new] MuranoPackages.import_and_filter_applications

[new] MuranoPackages.package_lifecycle

[improved] NovaKeypair.boot_and_delete_server_with_keypair

New argument server_kwargs, these kwargs are used to boot server.

[fix] NeutronLoadbalancerV1.create_and_delete_vips

Now it works in case of concurrency > 1

	Contexts:

[improved] network

Network context accepts two new arguments:
subnets_per_network and network_create_args.

[fix] network

Fix cleanup if nova-network is used. Networks should be dissociate from
project before deletion

[fix] custom_image

Nova server that is used to create custom image was not deleted if
script that prepares server failed.

Bug fixes

9 bugs were fixed, the most critical are:

	Fix install_rally.sh script

Set 777 access to /var/lib/rally/database file if system-wide method of
installation is used.

	Rally HTML reports Overview table had few mistakes

	Success rate was always 100%

	Percentiles were wrongly calculated

	Missing Ironic, Murano and Workload(vm) options in default config file

	rally verify start failed while getting network_id

	rally verify genconfig hangs forever if Horizon is not available

Documentation

	Fix project maintainers page

Update the information about Rally maintainers

	Document rally –plugin-paths CLI argument

	Code blocks in documentation looks prettier now

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

 	All release notes

Rally v0.1.2

Information

	Commits
	208

	Bug fixes
	37

	Dev cycle
	77 days

	Release date
	23/December/2015

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

Warning

Release 0.1.2 is the last release with Python 2.6 support.

Deprecations

	Class rally.common.objects.Endpoint was renamed to Credentials. Old
class is kept for backward compatibility. Please, stop using the old class
in your plugins.

Warning

dict key was changed too in user context from “endpoint” to “credential”

	rally.task.utils: wait_is_ready(), wait_for(), wait_for_delete() deprecated
you should use wait_for_status() instead.

Rally Verify

	Added possibility to run Tempest tests listed in a file(–tests-file argument in verify start)

	Added possibility to upload Tempest subunit stream logs into data base

	Improvements in generating Tempest config file

	Reworked subunit stream parser

	Don’t install Tempest when rally verify [gen/show]config

	Rally team tries to simplify usage of each our component.
Now Rally verification has some kind of a context like in Tasks.
Before launching each verification, Rally checks existence of required
resources(networks, images, flavours, etc) in Tempest configuration file and
pre-creates them. Do not worry, all these resources will not be forgotten
and left, Rally will clean them after verification.

Rally Task

	Add –html-static argument to rally task report which allows to
generate HTML reports that doesn’t require Internet.

	Rally supports different API versions now via api_versions context:

	Move rally.osclients.Clients to plugin base

Rally OSclients is plugable now and it is very easy to extend OSClients for
your cloud out of Rally tree.

	Add ‘merge’ functionality to SLA

All SLA plugins should implement merge() method now.
In future this will be used for distributed load generation.
Where SLA results from different runners will be merged together.

	New optional_action_timer decorator

Allows to make the methods that can be both atomic_action or regular
method. Method changes behavior based on value in extra key “atomic_action”

Rally Certification

	Fix Glance certification arguments

	Add Neutron Quotas only if Neutron service is available

Specs & Feature Requests

	Spec consistent-resource-names:

Resource name is based on Task id now. It is a huge step to persistence
and disaster cleanups.

	Add a spec for distributed load generation:

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/distributed_runner.rst

	Improvements for scenario output format

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/improve_scenario_output_format.rst

	Task and Verify results export command

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/task_and_verification_export.rst

Plugins

	Scenarios:

	[new] NovaServers.boot_and_get_console_output

	[new] NovaServers.boot_and_show_server

	[new] NovaServers.boot_server_attach_created_volume_and_resize

	[new] NovaServers.boot_server_from_volume_and_resize

	[new] NeutronSecurityGroup.create_and_delete_security_groups

	[new] NeutronSecurityGroup.create_and_list_security_groups

	[new] NeutronSecurityGroup.create_and_update_security_groups

	[new] NeutronLoadbalancerV1.create_and_delete_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_list_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_update_healthmonitors

	[new] SwiftObjects.list_and_download_objects_in_containers

	[new] SwiftObjects.list_objects_in_containers

	[new] FuelNodes.add_and_remove_node

	[new] CeilometerMeters.list_matched_meters

	[new] CeilometerResource.list_matched_resources

	[new] CeilometerSamples.list_matched_samples

	[new] CeilometerStats.get_stats

	[new] Authenticate.validate_monasca

	[new] DesignateBasic.create_and_delete_zone

	[new] DesignateBasic.create_and_list_zones

	[new] DesignateBasic.list_recordsets

	[new] DesignateBasic.list_zones

	
	[fix] CinderVolumes.create_nested_snapshots_and_attach_volume

	Remove random nested level which produce different amount of atomic
actions and bad reports.

	Support for Designate V2 api

	A lot of improvements in Sahara scenarios

	Context:

	[new] api_versions

Context allows us to setup client to communicate to specific service.

	[new] swift_objects

Context pre creates swift objects for future usage in scenarios

	[update] sahara_cluster

It supports proxy server which allows to use single floating IP for
whole cluster.

	[fix] cleanup

Fix cleanup of networks remove vip before port.

Bug fixes

37 bugs were fixed, the most critical are:

	Follow symlinks in plugin discovery

	Use sed without -i option for portability (install_rally.sh)

	Fixed race in rally.common.broker

	Fixed incorrect iteration number on “Failures” Tab

	Fixing issue with create_isolated_networks = False

	Fix docker build command

Documentation

Fixed some minor typos and inaccuracies.

Thanks

We would like to thank Andreas Jaeger for ability to provide Python 2.6 support in this release.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

Rally v0.1.2

Information

	Commits
	208

	Bug fixes
	37

	Dev cycle
	77 days

	Release date
	23/December/2015

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

Warning

Release 0.1.2 is the last release with Python 2.6 support.

Deprecations

	Class rally.common.objects.Endpoint was renamed to Credentials. Old
class is kept for backward compatibility. Please, stop using the old class
in your plugins.

Warning

dict key was changed too in user context from “endpoint” to “credential”

	rally.task.utils: wait_is_ready(), wait_for(), wait_for_delete() deprecated
you should use wait_for_status() instead.

Rally Verify

	Added possibility to run Tempest tests listed in a file(–tests-file argument in verify start)

	Added possibility to upload Tempest subunit stream logs into data base

	Improvements in generating Tempest config file

	Reworked subunit stream parser

	Don’t install Tempest when rally verify [gen/show]config

	Rally team tries to simplify usage of each our component.
Now Rally verification has some kind of a context like in Tasks.
Before launching each verification, Rally checks existence of required
resources(networks, images, flavours, etc) in Tempest configuration file and
pre-creates them. Do not worry, all these resources will not be forgotten
and left, Rally will clean them after verification.

Rally Task

	Add –html-static argument to rally task report which allows to
generate HTML reports that doesn’t require Internet.

	Rally supports different API versions now via api_versions context:

	Move rally.osclients.Clients to plugin base

Rally OSclients is plugable now and it is very easy to extend OSClients for
your cloud out of Rally tree.

	Add ‘merge’ functionality to SLA

All SLA plugins should implement merge() method now.
In future this will be used for distributed load generation.
Where SLA results from different runners will be merged together.

	New optional_action_timer decorator

Allows to make the methods that can be both atomic_action or regular
method. Method changes behavior based on value in extra key “atomic_action”

Rally Certification

	Fix Glance certification arguments

	Add Neutron Quotas only if Neutron service is available

Specs & Feature Requests

	Spec consistent-resource-names:

Resource name is based on Task id now. It is a huge step to persistence
and disaster cleanups.

	Add a spec for distributed load generation:

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/distributed_runner.rst

	Improvements for scenario output format

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/improve_scenario_output_format.rst

	Task and Verify results export command

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/task_and_verification_export.rst

Plugins

	Scenarios:

	[new] NovaServers.boot_and_get_console_output

	[new] NovaServers.boot_and_show_server

	[new] NovaServers.boot_server_attach_created_volume_and_resize

	[new] NovaServers.boot_server_from_volume_and_resize

	[new] NeutronSecurityGroup.create_and_delete_security_groups

	[new] NeutronSecurityGroup.create_and_list_security_groups

	[new] NeutronSecurityGroup.create_and_update_security_groups

	[new] NeutronLoadbalancerV1.create_and_delete_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_list_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_update_healthmonitors

	[new] SwiftObjects.list_and_download_objects_in_containers

	[new] SwiftObjects.list_objects_in_containers

	[new] FuelNodes.add_and_remove_node

	[new] CeilometerMeters.list_matched_meters

	[new] CeilometerResource.list_matched_resources

	[new] CeilometerSamples.list_matched_samples

	[new] CeilometerStats.get_stats

	[new] Authenticate.validate_monasca

	[new] DesignateBasic.create_and_delete_zone

	[new] DesignateBasic.create_and_list_zones

	[new] DesignateBasic.list_recordsets

	[new] DesignateBasic.list_zones

	
	[fix] CinderVolumes.create_nested_snapshots_and_attach_volume

	Remove random nested level which produce different amount of atomic
actions and bad reports.

	Support for Designate V2 api

	A lot of improvements in Sahara scenarios

	Context:

	[new] api_versions

Context allows us to setup client to communicate to specific service.

	[new] swift_objects

Context pre creates swift objects for future usage in scenarios

	[update] sahara_cluster

It supports proxy server which allows to use single floating IP for
whole cluster.

	[fix] cleanup

Fix cleanup of networks remove vip before port.

Bug fixes

37 bugs were fixed, the most critical are:

	Follow symlinks in plugin discovery

	Use sed without -i option for portability (install_rally.sh)

	Fixed race in rally.common.broker

	Fixed incorrect iteration number on “Failures” Tab

	Fixing issue with create_isolated_networks = False

	Fix docker build command

Documentation

Fixed some minor typos and inaccuracies.

Thanks

We would like to thank Andreas Jaeger for ability to provide Python 2.6 support in this release.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Rally 0.1.2 documentation

 	Release Notes

Rally v0.1.2

Information

	Commits
	208

	Bug fixes
	37

	Dev cycle
	77 days

	Release date
	23/December/2015

Details

This release, as well as all previous ones, includes a lot of internal and
external changes. Most important of them are listed below.

Warning

Release 0.1.2 is the last release with Python 2.6 support.

Deprecations

	Class rally.common.objects.Endpoint was renamed to Credentials. Old
class is kept for backward compatibility. Please, stop using the old class
in your plugins.

Warning

dict key was changed too in user context from “endpoint” to “credential”

	rally.task.utils: wait_is_ready(), wait_for(), wait_for_delete() deprecated
you should use wait_for_status() instead.

Rally Verify

	Added possibility to run Tempest tests listed in a file(–tests-file argument in verify start)

	Added possibility to upload Tempest subunit stream logs into data base

	Improvements in generating Tempest config file

	Reworked subunit stream parser

	Don’t install Tempest when rally verify [gen/show]config

	Rally team tries to simplify usage of each our component.
Now Rally verification has some kind of a context like in Tasks.
Before launching each verification, Rally checks existence of required
resources(networks, images, flavours, etc) in Tempest configuration file and
pre-creates them. Do not worry, all these resources will not be forgotten
and left, Rally will clean them after verification.

Rally Task

	Add –html-static argument to rally task report which allows to
generate HTML reports that doesn’t require Internet.

	Rally supports different API versions now via api_versions context:

	Move rally.osclients.Clients to plugin base

Rally OSclients is plugable now and it is very easy to extend OSClients for
your cloud out of Rally tree.

	Add ‘merge’ functionality to SLA

All SLA plugins should implement merge() method now.
In future this will be used for distributed load generation.
Where SLA results from different runners will be merged together.

	New optional_action_timer decorator

Allows to make the methods that can be both atomic_action or regular
method. Method changes behavior based on value in extra key “atomic_action”

Rally Certification

	Fix Glance certification arguments

	Add Neutron Quotas only if Neutron service is available

Specs & Feature Requests

	Spec consistent-resource-names:

Resource name is based on Task id now. It is a huge step to persistence
and disaster cleanups.

	Add a spec for distributed load generation:

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/distributed_runner.rst

	Improvements for scenario output format

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/improve_scenario_output_format.rst

	Task and Verify results export command

https://github.com/openstack/rally/blob/master/doc/specs/in-progress/task_and_verification_export.rst

Plugins

	Scenarios:

	[new] NovaServers.boot_and_get_console_output

	[new] NovaServers.boot_and_show_server

	[new] NovaServers.boot_server_attach_created_volume_and_resize

	[new] NovaServers.boot_server_from_volume_and_resize

	[new] NeutronSecurityGroup.create_and_delete_security_groups

	[new] NeutronSecurityGroup.create_and_list_security_groups

	[new] NeutronSecurityGroup.create_and_update_security_groups

	[new] NeutronLoadbalancerV1.create_and_delete_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_list_healthmonitors

	[new] NeutronLoadbalancerV1.create_and_update_healthmonitors

	[new] SwiftObjects.list_and_download_objects_in_containers

	[new] SwiftObjects.list_objects_in_containers

	[new] FuelNodes.add_and_remove_node

	[new] CeilometerMeters.list_matched_meters

	[new] CeilometerResource.list_matched_resources

	[new] CeilometerSamples.list_matched_samples

	[new] CeilometerStats.get_stats

	[new] Authenticate.validate_monasca

	[new] DesignateBasic.create_and_delete_zone

	[new] DesignateBasic.create_and_list_zones

	[new] DesignateBasic.list_recordsets

	[new] DesignateBasic.list_zones

	
	[fix] CinderVolumes.create_nested_snapshots_and_attach_volume

	Remove random nested level which produce different amount of atomic
actions and bad reports.

	Support for Designate V2 api

	A lot of improvements in Sahara scenarios

	Context:

	[new] api_versions

Context allows us to setup client to communicate to specific service.

	[new] swift_objects

Context pre creates swift objects for future usage in scenarios

	[update] sahara_cluster

It supports proxy server which allows to use single floating IP for
whole cluster.

	[fix] cleanup

Fix cleanup of networks remove vip before port.

Bug fixes

37 bugs were fixed, the most critical are:

	Follow symlinks in plugin discovery

	Use sed without -i option for portability (install_rally.sh)

	Fixed race in rally.common.broker

	Fixed incorrect iteration number on “Failures” Tab

	Fixing issue with create_isolated_networks = False

	Fix docker build command

Documentation

Fixed some minor typos and inaccuracies.

Thanks

We would like to thank Andreas Jaeger for ability to provide Python 2.6 support in this release.

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Rally 0.1.2 documentation

Index

 Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_images/Report-SLA-Overview.png
Benchmark overview
Input fle

Scenario s

Losd duration s) Ful duration (s) Merstions Rumer Emors Success (SLA)
» Dummy Oummy dummy 018 a5 s constant 0
Oummy dummy_excepton 0110

_images/Report-Abort-on-SLA-task-1.png
benchmark results

Benchmark overview Authenticate.keystone (90.672s)

Input file
Overview Input task
¥ Authenticate

Load duration: 86.158 s Full duration: 90.672 s lterations: 2495 _Failures: 0

Service-level agreement

Criterion Detal Success

max_avg_duration Maximum average duration of one ieration 8.588 <= 5.00s - Falled False

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentile 95 percentile Success. Count

total 0108 858 97 10782 2125 1000% 2495

Charts for the Total durations

@stackes OSteam Oxpanded @auraton © idle_guraton
6589,
0.00|
50.00]
40.0]
30.00]
200)

1000

500 1000 1500 2000
Heraton (oder number of method's cal)

_images/Report-Overview.png
Benchmark overview

Inpt e
" Scenario + Load duration (s) Full duration () Merations. Runner Errors. ‘Success (SLA)

¥ NovaServers NovaServers.bool_and_delete_server 70,131 7546 0 comsant 0 .

_images/Rally-Actions.png
Major Rally actions

Deploy
(or use existing)
OpenStack cloud

e

Verification,
results

Verify
(run tempest)

i

N S

Profiing
data from
Benchmark Ceilometer
(generate real
user load)
| senchmark
— resuits

Generate report
based on results
of verification,
benchmarks &
profilng info

Get verification
&
" benchmark results

S

Major Rally actions

_images/Rally_who_is_using.png
CAN@NICAL

FLexTRONICS D]

MIRANTIS

O redhat

\W/

HUAWEI

YaHoO!

.|||.|||.
CISCO.

nte

V/ symantec

_images/Rally_VM_list.png
Duration (seconds)

4.56,

@Stacked OStream O Expanded Onova.boot_server novalist_servers

100
Iteration (order number of method's call)

_images/Report-SLA-Scenario.png
Benchmark overview Dummy.dummy_exception (6.013s)

Input file
Overview | Falures Inputtask

v Dummy
aummy. Load duration: 0.110's Full duration: 6.013 s _terations: 5 Faiures: 5

Service-level agreement

failure_rate Maximum failue rae percent 0.0% fallures, minimum allure rate percent 0% failures, actually 100.0%

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentie 95 percentie

search.html

 Navigation

 		
 index

 		Rally 0.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

_images/Rally_Architecture.png
Rally as a APP Rally Core

Rally CLI

entry point of python app

Magic that verifies,
benchmarks & deploys
OpenStack

Rally as a Service
local

(in single
roces;
Rally CLI P)
Rally Manager
ocal orchestrator
Jonal Manager
RPC API
Rally Rally DB.API
python lib AMQP sqlalchemy
HTe RPC API
oslo
messaging
REST API oS
pecan [—AMQP mysq/ postgres / sqlite

_images/Report-Abort-on-SLA-task-2.png
benchmark results

Benchmark overview

Input ile

¥ Authenticate

Authenticate.keystone (45.040s)

Overview Input task
Load duration: 40.631 s Ful duraion: 45.040's lterations: 1410 Failures: 0

Service-level agreement

Critrion Detail
max_seconds_per_teation Maximum seconds per Heration 2.08s<= 10.0s - Falled
faiure_rate Failrerato critria 0.00% <= 0.00% <= 0.0% - Passed
‘max_avg_duration Maximum average duration of one Heraton 5415 <= .00s- Falled

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percontile 95 perconile Success.

total o082 sant 208 10808 14505 1000%

Charts for the Total durations

@siacied OStream OExpanded @durtion
212
2000,

00 00

Success.

Faise

True

1410

ide_duration

Heration (order rumber of method'scal)

_images/Rally_QA.png
Going
to benchmark Openstack

Openstack cloud required
at scale?

Do you have
one?

You have zillon
servers

Your company
has a big cloud

You are very
rich!

No——»{

Deploy Openstack
on them

Create a lot of VMs.

Buy a bunch of (virtual) servers

Create alot of LXC containers on
hardware that you have

Yes:

_images/Report-Multiple-Overview.png
ben:

Benchmark overview

Input ile
Scenario s Losdduraon(s) Fullduwation(s) Kerations Rumner Emors Success (SLA)
» KeystoneBasic KeystonoBasic craate_deete_user a7 10081 w0 constant 0 .
NovaServers boot_and_dolee_server 84.196 10203 0 constant 0 .

» NovaServers

_images/Report-Scenario-Overview.png
Benchmark overview

Input file

¥ NovaServers

NovaServers.boot_and_delete_server (87.546s)

Overview

Details Input task

Load duration: 70.131's Full duration: 87.546 s lerations: 10 Failures: 0

Total durations

Action Min(sec) Avglse) Max(sec) 90percentie 95 percentie Success Count
ova.poat_server 790 Fres T azar 10805 1000% 0
ova.delete_server s a5 am g ars 1000% 0
total 1255 3621 1637 as 1sam 000% w0

Charts for the Total durations

1637

1400

1200

1000

a0

600

400

200

@5icies Osveam OEspandes @auraton e auraton

_images/Rally-Plugins.png
RALLY MODULES:

rally.benchmark.scenarios
rally.benchmark.runners
rally.benchmark.context

rally.benchmark.sla

loptirallylplugins
~Lrallylplugins

Benchmark Scenario
(Seenanos) < Runners > (Contexts) (StA) ’

Rally
Benchmark Engine

_images/Report-Multiple-Configurations-Overview.png
Benchmark overview

Input ile
Scenario s Load duration s)

¥ NovaServers. NovaServers boot_and_delets_server 72234
NovaServers boot_and_delets_server2 71030

oot and_delets_server 2]

Ful duration (s)
o160
oz

_images/Report-Scenario-Atomic.png
benchmark results

Benchmark overview NovaServers.boot_and_delete_server (87.546s)
Input ile
Detais

Charts for each Atomic Action

@5ickes Ostream OExpanded nova boot_server nova delte_server
1637

1800

800
600
200

000
4 2 3) s . 7 s B 0

Heration (oder number of method'scal)

_images/Amqp_rpc_single_reply_queue.png
Time to boot & destroy in seconds

200 times Start and Delete VM, with different

amqp_rpe_single_reply_queue values

16

Concurrent users

30

M tum off
M tum on

feature_request/implemented/stop_scenario_after_several_errors.html

 Navigation

 		
 index

 		Rally 0.1.2 documentation »

Stop scenario after several errors

Use case

Starting long tests on the big environments.

Problem description

When we start a rally scenarios on the env where keystone die we get a lot of
time from timeout

Example

Times in hard tests
05:25:40 rally-scenarios.cinder
05:25:40 create-and-delete-volume [4074 iterations, 15 threads] OK 8.91
08:00:02 create-and-delete-snapshot [5238 iterations, 15 threads] OK 17.46
08:53:20 create-and-list-volume [4074 iterations, 15 threads] OK 3.18
12:04:14 create-snapshot-and-attach-volume [2619 iterations, 15 threads] FAIL
14:18:44 create-and-attach-volume [2619 iterations, 15 threads] FAIL
14:23:47 rally-scenarios.vm
14:23:47 boot_runcommand_metadata_delete [5 iterations, 5 threads] FAIL
16:30:46 rally-scenarios.nova
16:30:46 boot_and_list_server [5820 iterations, 15 threads] FAIL
19:19:30 resize_server [5820 iterations, 15 threads] FAIL
02:51:13 boot_and_delete_server_with_secgroups [5820 iterations, 60 threads] FAIL

Times in light variant
00:38:25 rally-scenarios.cinder
00:38:25 create-and-delete-volume [14 iterations, 1 threads] OK 5.30
00:40:39 create-and-delete-snapshot [18 iterations, 1 threads] OK 5.65
00:41:52 create-and-list-volume [14 iterations, 1 threads] OK 2.89
00:45:18 create-snapshot-and-attach-volume [9 iterations, 1 threads] OK 17.75
00:48:54 create-and-attach-volume [9 iterations, 1 threads] OK 20.04
00:52:29 rally-scenarios.vm
00:52:29 boot_runcommand_metadata_delete [5 iterations, 5 threads] OK 128.86
00:56:42 rally-scenarios.nova
00:56:42 boot_and_list_server [20 iterations, 1 threads] OK 6.98
01:04:48 resize_server [20 iterations, 1 threads] OK 22.90

In the hard test we have a lot of timeouts from keystone and a lot of time on
test execution

Possible solution

Improve SLA check functionality to work “online”. And add ability to control
execution process and stop load generation in case of sla check failures.

 © Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

feature_request/implemented/LDAP_support.html

 Navigation

 		
 index

 		Rally 0.1.2 documentation »

Support benchmarking clouds that are using LDAP

Use Case

A lot of production clouds are using LDAP with read only access. It means
that load can be generated only by existing in system users and there is no admin access.

Problem Description

Rally is using admin access to create temporary users that will be used to
produce load.

Possible Solution

		Add some way to pass already existing users

Current Solution

		Allow the user to specify existing users in the configuration of the ExistingCloud deployment plugin

		When such an ExistingCloud deployment is active, and the benchmark task file does not specify the “users” context, use the existing users instead of creating the temporary ones.

		Modify the rally show ... commands to list resources for each user separately.

 © Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

_images/Rally_snapshot_vm.png
Duration (seconds)

@Stacked OStream O Expanded @novaboot_server nova.create_image
nova.delete_server " nova.boot_server
@ nova.delete_server () nova.delete_image

20 40 60 80 100
Iteration (order number of method's call)

_images/Rally-UseCases.png
Rally for Devs & QA:

Not clear where is issue?
Just run another benchmark
or change load level

[A

" Process & Make
Deploy Simulate real
Rally OpenStack user load aggregate OpenStack
results better
Deploy new OpenStack with:
-1) another configuration
2) code that fix performance issue
3) different third part components
(mysql or psg, rabbit or gpid)
Rally for DevOps:
With admin access
/(crea(e temp usevs)\
Process & Ensure that
Use existing Simulate real
Rally cloud user load aggregate OpenStack
results pass SLA
without admin access /
use set of existing users
Rally CI/CD:

Improve
OpenStack

Deploy OpensStack on continuously

specific hardware and
configuration with

Run specific set Store historical
of benchmarks performance data

latest version of your
tool and code

Track
OpenStack
Quality

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

miscellaneous/concepts.html

 Navigation

 		
 index

 		Rally 0.1.2 documentation »

Main concepts of Rally

Benchmark Scenarios

Concept

The concept of benchmark scenarios is a central one in Rally. Benchmark scenarios are what Rally actually uses to test the performance of an OpenStack deployment. They also play the role of main building blocks in the configurations of benchmark tasks. Each benchmark scenario performs a small set of atomic operations, thus testing some simple use case, usually that of a specific OpenStack project. For example, the “NovaServers” scenario group contains scenarios that use several basic operations available in nova. The “boot_and_delete_server” benchmark scenario from that group allows to benchmark the performance of a sequence of only two simple operations: it first boots a server (with customizable parameters) and then deletes it.

User’s view

From the user’s point of view, Rally launches different benchmark scenarios while performing some benchmark task. Benchmark task is essentially a set of benchmark scenarios run against some OpenStack deployment in a specific (and customizable) manner by the CLI command:

rally task start --task=<task_config.json>

Accordingly, the user may specify the names and parameters of benchmark scenarios to be run in benchmark task configuration files. A typical configuration file would have the following contents:

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor_id": 42,
 "image_id": "73257560-c59b-4275-a1ec-ab140e5b9979"
 },
 "runner": {"times": 3},
 "context": {...}
 },
 {
 "args": {
 "flavor_id": 1,
 "image_id": "3ba2b5f6-8d8d-4bbe-9ce5-4be01d912679"
 },
 "runner": {"times": 3},
 "context": {...}
 }
],
 "CinderVolumes.create_volume": [
 {
 "args": {
 "size": 42
 },
 "runner": {"times": 3},
 "context": {...}
 }
]
}

In this example, the task configuration file specifies two benchmarks to be run, namely “NovaServers.boot_server” and “CinderVolumes.create_volume” (benchmark name = ScenarioClassName.method_name). Each benchmark scenario may be started several times with different parameters. In our example, that’s the case with “NovaServers.boot_server”, which is used to test booting servers from different images & flavors.

Note that inside each scenario configuration, the benchmark scenario is actually launched 3 times (that is specified in the “runner” field). It can be specified in “runner” in more detail how exactly the benchmark scenario should be launched; we elaborate on that in the “Scenario Runners” section below.

Developer’s view

From the developer’s perspective, a benchmark scenario is a method marked by a @scenario decorator and placed in a class that inherits from the base Scenario [https://github.com/openstack/rally/blob/master/rally/benchmark/scenarios/base.py#L40] class and located in some subpackage of rally.task.scenarios [https://github.com/openstack/rally/tree/master/rally/benchmark/scenarios]. There may be arbitrary many benchmark scenarios in a scenario class; each of them should be referenced to (in the task configuration file) as ScenarioClassName.method_name.

In a toy example below, we define a scenario class MyScenario with one benchmark scenario MyScenario.scenario. This benchmark scenario tests the performance of a sequence of 2 actions, implemented via private methods in the same class. Both methods are marked with the @atomic_action_timer decorator. This allows Rally to handle those actions in a special way and, after benchmarks complete, show runtime statistics not only for the whole scenarios, but for separate actions as well.

from rally.task.scenarios import base
from rally.task import utils

class MyScenario(base.Scenario):
 """My class that contains benchmark scenarios."""

 @base.atomic_action_timer("action_1")
 def _action_1(self, **kwargs):
 """Do something with the cloud."""

 @base.atomic_action_timer("action_2")
 def _action_2(self, **kwargs):
 """Do something with the cloud."""

 @base.scenario()
 def scenario(self, **kwargs):
 self._action_1()
 self._action_2()

Scenario runners

Concept

Scenario Runners in Rally are entities that control the execution type and order of benchmark scenarios. They support different running strategies for creating load on the cloud, including simulating concurrent requests from different users, periodic load, gradually growing load and so on.

User’s view

The user can specify which type of load on the cloud he would like to have through the “runner” section in the task configuration file:

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor_id": 42,
 "image_id": "73257560-c59b-4275-a1ec-ab140e5b9979"
 },
 "runner": {
 "type": "constant",
 "times": 15,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 3
 },
 "quotas": {
 "nova": {
 "instances": 20
 }
 }
 }
 }
]
}

The scenario running strategy is specified by its type and also by some type-specific parameters. Available types include:

		constant, for creating a constant load by running the scenario for a fixed number of times, possibly in parallel (that’s controlled by the “concurrency” parameter).

		constant_for_duration that works exactly as constant, but runs the benchmark scenario until a specified number of seconds elapses (“duration” parameter).

		rps, which executes benchmark scenarios with intervals between two consecutive runs, specified in the “rps” field in times per second.

		serial, which is very useful to test new scenarios since it just runs the benchmark scenario for a fixed number of times in a single thread.

Also, all scenario runners can be provided (again, through the “runner” section in the config file) with an optional “timeout” parameter, which specifies the timeout for each single benchmark scenario run (in seconds).

Developer’s view

It is possible to extend Rally with new Scenario Runner types, if needed. Basically, each scenario runner should be implemented as a subclass of the base ScenarioRunner [https://github.com/openstack/rally/blob/master/rally/benchmark/runner.py#L113] class and located in the rally.plugins.common.runners package [https://github.com/openstack/rally/tree/master/rally/plugins/common/runners]. The interface each scenario runner class should support is fairly easy:

from rally.task import runner
from rally import consts

class MyScenarioRunner(runner.ScenarioRunner):
 """My scenario runner."""

 # This string is what the user will have to specify in the task
 # configuration file (in "runner": {"type": ...})

 __execution_type__ = "my_scenario_runner"

 # CONFIG_SCHEMA is used to automatically validate the input
 # config of the scenario runner, passed by the user in the task
 # configuration file.

 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "properties": {
 "type": {
 "type": "string"
 },
 "some_specific_property": {...}
 }
 }

 def _run_scenario(self, cls, method_name, ctx, args):
 """Run the scenario 'method_name' from scenario class 'cls'
 with arguments 'args', given a context 'ctx'.

 This method should return the results dictionary wrapped in
 a runner.ScenarioRunnerResult object (not plain JSON)
 """
 results = ...

 return runner.ScenarioRunnerResult(results)

Benchmark contexts

Concept

The notion of contexts in Rally is essentially used to define different types of environments in which benchmark scenarios can be launched. Those environments are usually specified by such parameters as the number of tenants and users that should be present in an OpenStack project, the roles granted to those users, extended or narrowed quotas and so on.

User’s view

From the user’s prospective, contexts in Rally are manageable via the task configuration files. In a typical configuration file, each benchmark scenario to be run is not only supplied by the information about its arguments and how many times it should be launched, but also with a special “context” section. In this section, the user may configure a number of contexts he needs his scenarios to be run within.

In the example below, the “users” context specifies that the “NovaServers.boot_server” scenario should be run from 1 tenant having 3 users in it. Bearing in mind that the default quota for the number of instances is 10 instances per tenant, it is also reasonable to extend it to, say, 20 instances in the “quotas” context. Otherwise the scenario would eventually fail, since it tries to boot a server 15 times from a single tenant.

{
 "NovaServers.boot_server": [
 {
 "args": {
 "flavor_id": 42,
 "image_id": "73257560-c59b-4275-a1ec-ab140e5b9979"
 },
 "runner": {
 "type": "constant",
 "times": 15,
 "concurrency": 2
 },
 "context": {
 "users": {
 "tenants": 1,
 "users_per_tenant": 3
 },
 "quotas": {
 "nova": {
 "instances": 20
 }
 }
 }
 }
]
}

Developer’s view

From the developer’s view, contexts management is implemented via Context classes. Each context type that can be specified in the task configuration file corresponds to a certain subclass of the base [https://github.com/openstack/rally/blob/master/rally/benchmark/context.py Context] class. Every context class should implement a fairly simple interface:

from rally.task import context
from rally import consts

@context.configure(name="your_context", # Corresponds to the context field name in task configuration files
 order=100500, # a number specifying the priority with which the context should be set up
 hidden=False) # True if the context cannot be configured through the input task file
class YourContext(context.Context):
 """Yet another context class."""

 # The schema of the context configuration format
 CONFIG_SCHEMA = {
 "type": "object",
 "$schema": consts.JSON_SCHEMA,
 "additionalProperties": False,
 "properties": {
 "property_1": <SCHEMA>,
 "property_2": <SCHEMA>
 }
 }

 def __init__(self, context):
 super(YourContext, self).__init__(context)
 # Initialize the necessary stuff

 def setup(self):
 # Prepare the environment in the desired way

 def cleanup(self):
 # Cleanup the environment properly

Consequently, the algorithm of initiating the contexts can be roughly seen as follows:

context1 = Context1(ctx)
context2 = Context2(ctx)
context3 = Context3(ctx)

context1.setup()
context2.setup()
context3.setup()

<Run benchmark scenarios in the prepared environment>

context3.cleanup()
context2.cleanup()
context1.cleanup()

		where the order of contexts in which they are set up depends on the value of their order attribute. Contexts with lower order have higher priority: 1xx contexts are reserved for users-related stuff (e.g. users/tenants creation, roles assignment etc.), 2xx - for quotas etc.

The hidden attribute defines whether the context should be a hidden one. Hidden contexts cannot be configured by end-users through the task configuration file as shown above, but should be specified by a benchmark scenario developer through a special @base.scenario(context={...}) decorator. Hidden contexts are typically needed to satisfy some specific benchmark scenario-specific needs, which don’t require the end-user’s attention. For example, the hidden “cleanup” context (rally.plugins.openstack.context.cleanup.context) is used to make generic cleanup after running benchmark. So user can’t change
it configuration via task and break his cloud.

If you want to dive deeper, also see the context manager (rally.task.context) class that actually implements the algorithm described above.

 © Copyright 2015, OpenStack Foundation.
 Last updated on Wed Dec 23 17:58:54 2015, commit 2c34d18.
 Created using Sphinx 1.2.3.

