
Rally Documentation
Release 0.0.3

OpenStack Foundation

April 14, 2015

Contents

1 Contents 3
1.1 Overview . 3
1.2 Installation . 9
1.3 Rally step-by-step . 11
1.4 User stories . 35
1.5 Rally Plugins . 39
1.6 Contribute to Rally . 46
1.7 Rally OS Gates . 49
1.8 Request New Features . 51
1.9 Project Info . 54
1.10 Release Notes . 55

i

ii

Rally Documentation, Release 0.0.3

OpenStack is, undoubtedly, a really huge ecosystem of cooperative services. Rally is a benchmarking tool that
answers the question: “How does OpenStack work at scale?”. To make this possible, Rally automates and unifies
multi-node OpenStack deployment, cloud verification, benchmarking & profiling. Rally does it in a generic way,
making it possible to check whether OpenStack is going to work well on, say, a 1k-servers installation under high
load. Thus it can be used as a basic tool for an OpenStack CI/CD system that would continuously improve its SLA,
performance and stability.

Contents 1

Rally Documentation, Release 0.0.3

2 Contents

CHAPTER 1

Contents

1.1 Overview

Rally is a benchmarking tool that automates and unifies multi-node OpenStack deployment, cloud verification,
benchmarking & profiling. It can be used as a basic tool for an OpenStack CI/CD system that would continuously
improve its SLA, performance and stability.

1.1.1 Use Cases

Let’s take a look at 3 major high level Use Cases of Rally:

3

Rally Documentation, Release 0.0.3

Generally, there are a few typical cases where Rally proves to be of great use:

1. Automate measuring & profiling focused on how new code changes affect the OS performance;

2. Using Rally profiler to detect scaling & performance issues;

3. Investigate how different deployments affect the OS performance:

• Find the set of suitable OpenStack deployment architectures;

• Create deployment specifications for different loads (amount of controllers, swift nodes, etc.);

4. Automate the search for hardware best suited for particular OpenStack cloud;

5. Automate the production cloud specification generation:

• Determine terminal loads for basic cloud operations: VM start & stop, Block Device create/destroy &
various OpenStack API methods;

4 Chapter 1. Contents

Rally Documentation, Release 0.0.3

• Check performance of basic cloud operations in case of different loads.

1.1.2 Real-life examples

To be substantive, let’s investigate a couple of real-life examples of Rally in action.

How does amqp_rpc_single_reply_queue affect performance?

Rally allowed us to reveal a quite an interesting fact about Nova. We used NovaServers.boot_and_delete benchmark
scenario to see how the amqp_rpc_single_reply_queue option affects VM bootup time (it turns on a kind of fast RPC).
Some time ago it was shown that cloud performance can be boosted by setting it on, so we naturally decided to check
this result with Rally. To make this test, we issued requests for booting and deleting VMs for a number of concurrent
users ranging from 1 to 30 with and without the investigated option. For each group of users, a total number of 200
requests was issued. Averaged time per request is shown below:

So Rally has unexpectedly indicated that setting the *amqp_rpc_single_reply_queue* option apparently affects
the cloud performance, but in quite an opposite way rather than it was thought before.

Performance of Nova list command

Another interesting result comes from the NovaServers.boot_and_list_server scenario, which enabled us to we
launched the following benchmark with Rally:

• Benchmark environment (which we also call “Context”): 1 temporary OpenStack user.

1.1. Overview 5

https://docs.google.com/file/d/0B-droFdkDaVhVzhsN3RKRlFLODQ/edit?pli=1

Rally Documentation, Release 0.0.3

• Benchmark scenario: boot a single VM from this user & list all VMs.

• Benchmark runner setting: repeat this procedure 200 times in a continuous way.

During the execution of this benchmark scenario, the user has more and more VMs on each iteration. Rally has shown
that in this case, the performance of the VM list command in Nova is degrading much faster than one might expect:

Complex scenarios

In fact, the vast majority of Rally scenarios is expressed as a sequence of “atomic” actions. For example, No-
vaServers.snapshot is composed of 6 atomic actions:

1. boot VM

2. snapshot VM

3. delete VM

4. boot VM from snapshot

5. delete VM

6. delete snapshot

Rally measures not only the performance of the benchmark scenario as a whole, but also that of single atomic actions.
As a result, Rally also plots the atomic actions performance data for each benchmark iteration in a quite detailed way:

6 Chapter 1. Contents

Rally Documentation, Release 0.0.3

1.1.3 Architecture

Usually OpenStack projects are implemented “as-a-Service”, so Rally provides this approach. In addition, it imple-
ments a CLI-driven approach that does not require a daemon:

1. Rally as-a-Service: Run rally as a set of daemons that present Web UI (work in progress) so 1 RaaS could be
used by a whole team.

2. Rally as-an-App: Rally as a just lightweight and portable CLI app (without any daemons) that makes it simple
to use & develop.

The diagram below shows how this is possible:

1.1. Overview 7

Rally Documentation, Release 0.0.3

The actual Rally core consists of 4 main components, listed below in the order they go into action:

1. Server Providers - provide a unified interface for interaction with different virtualization technologies (LXS,
Virsh etc.) and cloud suppliers (like Amazon): it does so via ssh access and in one L3 network;

2. Deploy Engines - deploy some OpenStack distribution (like DevStack or FUEL) before any benchmarking
procedures take place, using servers retrieved from Server Providers;

3. Verification - runs Tempest (or another specific set of tests) against the deployed cloud to check that it works
correctly, collects results & presents them in human readable form;

4. Benchmark Engine - allows to write parameterized benchmark scenarios & run them against the cloud.

It should become fairly obvious why Rally core needs to be split to these parts if you take a look at the following
diagram that visualizes a rough algorithm for starting benchmarking OpenStack at scale. Keep in mind that there
might be lots of different ways to set up virtual servers, as well as to deploy OpenStack to them.

8 Chapter 1. Contents

Rally Documentation, Release 0.0.3

1.2 Installation

1.2.1 Automated installation

git clone https://git.openstack.org/stackforge/rally
./rally/install_rally.sh

Notes: The installation script should be run as root or as a normal user using sudo. Rally requires either the Python
2.6 or the Python 2.7 version.

Alternatively, you can install Rally in a virtual environment:

1.2. Installation 9

Rally Documentation, Release 0.0.3

git clone https://git.openstack.org/stackforge/rally
./rally/install_rally.sh -v

You also have to set up the Rally database after the installation is complete:

rally-manage db recreate

1.2.2 Rally with DevStack all-in-one installation

It is also possible to install Rally with DevStack. First, clone the corresponding repositories:

git clone https://git.openstack.org/openstack-dev/devstack
git clone https://github.com/stackforge/rally

Then, configure DevStack to run Rally:

cp rally/contrib/devstack/lib/rally devstack/lib/
cp rally/contrib/devstack/extras.d/70-rally.sh devstack/extras.d/
cd devstack
echo "enable_service rally" >> localrc

Finally, run DevStack as usually:

./stack.sh

1.2.3 Rally & Docker

First you need to install docker. Installing docker in ubuntu may be done by following:

$ sudo apt-get update
$ sudo apt-get install docker.io
$ sudo usermod -a -G docker ‘id -u -n‘ # add yourself to docker group

NOTE: re-login is required to apply users groups changes and actually use docker.

Pull docker image with rally:

$ docker pull rallyforge/rally

Or you may want to build rally image from source:

first cd to rally source root dir
docker build -t myrally .

Since rally stores local settings in user’s home dir and the database in /var/lib/rally/database, you may want to keep
this directories outside of container. This may be done by the following steps:

cd
mkdir rally_home
sudo chown 65500 rally_home
docker run -t -i -v ~/rally_home:/home/rally rallyforge/rally

You may want to save last command as an alias:

echo ’alias dock_rally="docker run -t -i -v ~/rally_home:/home/rally rallyforge/rally"’ >> ~/.bashrc

After executing dock_rally alias, or docker run you got bash running inside container with rally installed. You
may do anytnig with rally, but you need to create db first:

10 Chapter 1. Contents

Rally Documentation, Release 0.0.3

user@box:~/rally$ dock_rally
rally@1cc98e0b5941:~$ rally-manage db recreate
rally@1cc98e0b5941:~$ rally deployment list
There are no deployments. To create a new deployment, use:
rally deployment create
rally@1cc98e0b5941:~$

More about docker: https://www.docker.com/

1.3 Rally step-by-step

In the following tutorial, we will guide you step-by-step through different use cases that might occur in Rally, starting
with the easy ones and moving towards more complicated cases.

1.3.1 Step 0. Installation

Installing Rally is very simple. Just execute the following commands:

git clone https://git.openstack.org/stackforge/rally
./rally/install_rally.sh

Notes: The installation script should be run as root or as a normal user using sudo. Rally requires either the Python
2.6 or the Python 2.7 version.

There are also other installation options that you can find here.

Now that you have rally installed, you are ready to start benchmarking OpenStack with it!

1.3.2 Step 1. Setting up the environment and running a benchmark from samples

In this demo, we will show how to perform some basic operations in Rally, such as registering an OpenStack cloud,
benchmarking it and generating benchmark reports.

We assume that you have a Rally installation and an already existing OpenStack deployment with Keystone available
at <KEYSTONE_AUTH_URL>.

Registering an OpenStack deployment in Rally

First, you have to provide Rally with an Openstack deployment it is going to benchmark. This should be done either
through OpenRC files or through deployment configuration files. In case you already have an OpenRC, it is extremely
simple to register a deployment with the deployment create command:

$. openrc admin admin
$ rally deployment create --fromenv --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | devstack_2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

1.3. Rally step-by-step 11

https://www.docker.com/
http://docs.openstack.org/user-guide/content/cli_openrc.html
https://github.com/stackforge/rally/tree/master/samples/deployments

Rally Documentation, Release 0.0.3

Alternatively, you can put the information about your cloud credentials into a JSON configuration file (let’s call it
existing.json). The deployment create command has a slightly different syntax in this case:

$ rally deployment create --file=existing.json --name=existing
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 28f90d74-d940-4874-a8ee-04fda59576da | 2015-01-18 00:11:38.059983 | devstack_2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment : <Deployment UUID>
...

Note the last line in the output. It says that the just created deployment is now used by Rally; that means that all the
benchmarking operations from now on are going to be performed on this deployment. Later we will show how to
switch between different deployments.

Finally, the deployment check command enables you to verify that your current deployment is healthy and ready to be
benchmarked:

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Benchmarking

Now that we have a working and registered deployment, we can start benchmarking it. The sequence of benchmarks
to be launched by Rally should be specified in a benchmark task configuration file (either in JSON or in YAML format).
Let’s try one of the sample benchmark tasks available in samples/tasks/scenarios, say, the one that boots and deletes
multiple servers (samples/tasks/scenarios/nova/boot-and-delete.json):

{
"NovaServers.boot_and_delete_server": [

{
"args": {

"flavor": {
"name": "m1.nano"

},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {

"type": "constant",
"times": 10,

12 Chapter 1. Contents

https://github.com/stackforge/rally/blob/master/samples/deployments/existing.json
https://github.com/stackforge/rally/tree/master/samples/tasks/scenarios

Rally Documentation, Release 0.0.3

"concurrency": 2
},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
}

}
]

}

To start a benchmark task, run the task start command (you can also add the -v option to print more logging informa-
tion):

$ rally task start samples/tasks/scenarios/nova/boot-and-delete.json
--
Preparing input task

--

Input task is:
<Your task config here>

--
Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: started

--

Benchmarking... This can take a while...

To track task status use:

rally task status
or
rally task detailed

--
Task 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996: finished

--

test scenario NovaServers.boot_and_delete_server
args position 0
args values:
{u’args’: {u’flavor’: {u’name’: u’m1.nano’},

u’force_delete’: False,
u’image’: {u’name’: u’^cirros.*uec$’}},

u’context’: {u’users’: {u’project_domain’: u’default’,
u’resource_management_workers’: 30,
u’tenants’: 3,
u’user_domain’: u’default’,
u’users_per_tenant’: 2}},

u’runner’: {u’concurrency’: 2, u’times’: 10, u’type’: u’constant’}}
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.99	9.047	11.862	9.747	10.805	100.0%	10
nova.delete_server	4.427	4.574	4.772	4.677	4.725	100.0%	10
total	12.556	13.621	16.37	14.252	15.311	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+

1.3. Rally step-by-step 13

Rally Documentation, Release 0.0.3

Load duration: 70.1310448647
Full duration: 87.545541048

HINTS:

* To plot HTML graphics with this data, run:
rally task plot2html 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996 --out output.html

* To get raw JSON output of task results, run:
rally task results 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Using task: 6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996

Note that the Rally input task above uses regular expressions to specify the image and flavor name to be used for
server creation, since concrete names might differ from installation to installation. If this benchmark task fails, then
the reason for that might a non-existing image/flavor specified in the task. To check what images/flavors are available
in the deployment you are currently benchmarking, you might use the rally show command:

$ rally show images
+--------------------------------------+-----------------------+-----------+
| UUID | Name | Size (B) |
+--------------------------------------+-----------------------+-----------+
| 8dfd6098-0c26-4cb5-8e77-1ecb2db0b8ae | CentOS 6.5 (x86_64) | 344457216 |
| 2b8d119e-9461-48fc-885b-1477abe2edc5 | CirrOS 0.3.1 (x86_64) | 13147648 |
+--------------------------------------+-----------------------+-----------+

$ rally show flavors
+---------------------+-----------+-------+----------+-----------+-----------+
| ID | Name | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
+---------------------+-----------+-------+----------+-----------+-----------+
1	m1.tiny	1	512		1
2	m1.small	1	2048		20
3	m1.medium	2	4096		40
4	m1.large	4	8192		80
5	m1.xlarge	8	16384		160
+---------------------+-----------+-------+----------+-----------+-----------+

Report generation

One of the most beautiful things in Rally is its task report generation mechanism. It enables you to create illustrative
and comprehensive HTML reports based on the benchmarking data. To create and open at once such a report for the
last task you have launched, call:

$ rally task report --out=report1.html --open

This will produce an HTML page with the overview of all the scenarios that you’ve included into the last benchmark
task completed in Rally (in our case, this is just one scenario, and we will cover the topic of multiple scenarios in one
task in the next step of our tutorial):

14 Chapter 1. Contents

Rally Documentation, Release 0.0.3

This aggregating table shows the duration of the load produced by the corresponding scenario (“Load duration”), the
overall benchmark scenario execution time, including the duration of environment preparation with contexts (“Full
duration”), the number of iterations of each scenario (“Iterations”), the type of the load used while running the
scenario (“Runner”), the number of failed iterations (“Errors”) and finally whether the scenario has passed certain
Success Criteria (“SLA”) that were set up by the user in the input configuration file (we will cover these criteria in one
of the next steps).

By navigating in the left panel, you can switch to the detailed view of the benchmark results for the only scenario we
included into our task, namely NovaServers.boot_and_delete_server:

This page, along with the description of the success criteria used to check the outcome of this scenario, shows some
more detailed information and statistics about the duration of its iterations. Now, the “Total durations” table splits
the duration of our scenario into the so-called “atomic actions”: in our case, the “boot_and_delete_server” scenario
consists of two actions - “boot_server” and “delete_server”. You can also see how the scenario duration changed
throughout is iterations in the “Charts for the total duration” section. Similar charts, but with atomic actions detaliza-
tion, will arise if you switch to the “Details” tab of this page:

1.3. Rally step-by-step 15

Rally Documentation, Release 0.0.3

Note that all the charts on the report pages are very dynamic: you can change their contents by clicking the switches
above the graph and see more information about its single points by hovering the cursor over these points.

Take some time to play around with these graphs and then move on to the next step of our tutorial.

1.3.3 Step 2. Running multiple benchmarks in a single task

Rally input task syntax

Rally comes with a really great collection of benchmark scenarios and in most real-world scenarios you will use
multiple scenarios to test your OpenStack cloud. Rally makes it very easy to run different benchmarks defined in a
single benchmark task. To do so, use the following syntax:

{
"<ScenarioName1>": [<benchmark_config>, <benchmark_config2>, ...]
"<ScenarioName2>": [<benchmark_config>, ...]

}

where <benchmark_config>, as before, is a dictionary:

{
"args": { scenario-specific arguments },
"runner": {"type": ..., }
...

}

Multiple benchmarks in a single task

As an example, let’s edit our configuration file from step 1 so that it prescribes Rally to launch not only the No-
vaServers.boot_and_delete_server scenario, but also the KeystoneBasic.create_delete_user scenario. All we have
to do is to append the configuration of the second scenario as yet another top-level key of our json file:

multiple-scenarios.json

{
"NovaServers.boot_and_delete_server": [

16 Chapter 1. Contents

Rally Documentation, Release 0.0.3

{
"args": {

"flavor": {
"name": "m1.nano"

},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {

"type": "constant",
"times": 10,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
}

}
],
"KeystoneBasic.create_delete_user": [

{
"args": {

"name_length": 10
},
"runner": {

"type": "constant",
"times": 10,
"concurrency": 3

}
}

]
}

Now you can start this benchmark task as usually:

$ rally task start multiple-scenarios.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.06	11.354	18.594	18.54	18.567	100.0%	10
nova.delete_server	4.364	5.054	6.837	6.805	6.821	100.0%	10
total	12.572	16.408	25.396	25.374	25.385	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 84.1959171295
Full duration: 102.033041
--

...

+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| keystone.create_user | 0.676 | 0.875 | 1.03 | 1.02 | 1.025 | 100.0% | 10 |

1.3. Rally step-by-step 17

Rally Documentation, Release 0.0.3

| keystone.delete_user | 0.407 | 0.647 | 0.84 | 0.739 | 0.79 | 100.0% | 10 |
| total | 1.082 | 1.522 | 1.757 | 1.724 | 1.741 | 100.0% | 10 |
+----------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 5.72119688988
Full duration: 10.0808410645

...

Note that the HTML reports you can generate by typing rally task report –out=report_name.html after your bench-
mark task has completed will get richer as your benchmark task configuration file includes more benchmark scenarios.
Let’s take a look at the report overview page for a task that covers all the scenarios available in Rally:

$ rally task report --out=report_multiple_scenarios.html --open

Multiple configurations of the same scenario

Yet another thing you can do in Rally is to launch the same benchmark scenario multiple times with different
configurations. That’s why our configuration file stores a list for the key “NovaServers.boot_and_delete_server”:
you can just append a different configuration of this benchmark scenario to this list to get it. Let’s say, you want to run
the boot_and_delete_server scenario twice: first using the “m1.nano” flavor and then using the “m1.tiny” flavor:

multiple-configurations.json

{
"NovaServers.boot_and_delete_server": [

{
"args": {

"flavor": {
"name": "m1.nano"

},
"image": {

"name": "^cirros.*uec$"
},
"force_delete": false

},
"runner": {...},
"context": {...}

},
{

"args": {
"flavor": {

"name": "m1.tiny"
},
"image": {

"name": "^cirros.*uec$"

18 Chapter 1. Contents

Rally Documentation, Release 0.0.3

},
"force_delete": false

},
"runner": {...},
"context": {...}

}
]

}

That’s it! You will get again the results for each configuration separately:

$ rally task start --task=multiple-configurations.json
...
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	7.896	9.433	13.14	11.329	12.234	100.0%	10
nova.delete_server	4.435	4.898	6.975	5.144	6.059	100.0%	10
total	12.404	14.331	17.979	16.72	17.349	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 73.2339417934
Full duration: 91.1692159176
--

...

+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
nova.boot_server	8.207	8.91	9.823	9.692	9.758	100.0%	10
nova.delete_server	4.405	4.767	6.477	4.904	5.691	100.0%	10
total	12.735	13.677	16.301	14.596	15.449	100.0%	10
+--------------------+-----------+-----------+-----------+---------------+---------------+---------+-------+
Load duration: 71.029528141
Full duration: 88.0259010792
...

The HTML report will also look similar to what we have seen before:

$ rally task report --out=report_multiple_configuraions.html --open

1.3. Rally step-by-step 19

Rally Documentation, Release 0.0.3

1.3.4 Step 3. Adding success criteria (SLA) for benchmarks

SLA - Service-Level Agreement (Success Criteria)

Rally allows you to set success criteria (also called SLA - Service-Level Agreement) for every benchmark. Rally will
automatically check them for you.

To configure the SLA, add the “sla” section to the configuration of the corresponding benchmark (the check name is
a key associated with its target value). You can combine different success criteria:

{
"NovaServers.boot_and_delete_server": [

{
"args": {

...
},
"runner": {

...
},
"context": {

...
},
"sla": {

"max_seconds_per_iteration": 10,
"failure_rate": {

"max": 25
}

}
}

]
}

Such configuration will mark the NovaServers.boot_and_delete_server benchmark scenario as not successful if
either some iteration took more than 10 seconds or more than 25% iterations failed.

Checking SLA

Let us show you how Rally SLA work using a simple example based on Dummy benchmark scenarios. These
scenarios actually do not perform any OpenStack-related stuff but are very useful for testing the behavious of Rally.
Let us put in a new task, test-sla.json, 2 scenarios – one that does nothing and another that just throws an exception:

{
"Dummy.dummy": [

{
"args": {},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
},
"sla": {

20 Chapter 1. Contents

Rally Documentation, Release 0.0.3

"failure_rate": {"max": 0.0}
}

}
],
"Dummy.dummy_exception": [

{
"args": {},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 2

},
"context": {

"users": {
"tenants": 3,
"users_per_tenant": 2

}
},
"sla": {

"failure_rate": {"max": 0.0}
}

}
]

}

Note that both scenarios in these tasks have the maximum failure rate of 0% as their success criterion. We expect
that the first scenario will pass this criterion while the second will fail it. Let’s start the task:

$ rally task start test-sla.json
...

After the task completes, run rally task sla_check to check the results again the success criteria you defined in the task:

$ rally task sla_check
+-----------------------+-----+--------------+--------+---+
| benchmark | pos | criterion | status | detail |
+-----------------------+-----+--------------+--------+---+
| Dummy.dummy | 0 | failure_rate | PASS | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 0.0% |
| Dummy.dummy_exception | 0 | failure_rate | FAIL | Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 100.0% |
+-----------------------+-----+--------------+--------+---+

Exactly as expected.

SLA in task report

SLA checks are nicely visualized in task reports. Generate one:

$ rally task report --out=report_sla.html --open

Benchmark scenarios that have passed SLA have a green check on the overview page:

1.3. Rally step-by-step 21

Rally Documentation, Release 0.0.3

Somewhat more detailed information about SLA is displayed on the scenario pages:

Success criteria present a very useful concept that enables not only to analyze the outcome of your benchmark tasks,
but also to control their execution. In the the next section of our tutorial, we will show how to use SLA to abort the
load generation before your OpenStack goes wrong.

1.3.5 Step 4. Aborting load generation on success criteria failure

Benchmarking pre-production and production OpenStack clouds is not a trivial task. From the one side it’s important
to reach the OpenStack cloud’s limits, from the other side the cloud shouldn’t be damaged. Rally aims to make this
task as simple as possible. Since the very beginning Rally was able to generate enough load for any OpenStack cloud.
Generating to big load was the major issue for production clouds, because Rally didn’t know how to stop the load until
it was to late. Finally I am happy to say that we solved this issue.

With the “stop on SLA failure” feature, however, things are much better.

This feature can be easily tested in real life by running one of the most important and plain benchmark scenario called
“KeystoneBasic.authenticate”. This scenario just tries to authenticate from users that were pre-created by Rally. Rally
input task looks as follows (auth.yaml):

Authenticate.keystone:
-
runner:

type: "rps"

22 Chapter 1. Contents

Rally Documentation, Release 0.0.3

times: 6000
rps: 50

context:
users:

tenants: 5
users_per_tenant: 10

sla:
max_avg_duration: 5

In human-readable form this input task means: Create 5 tenants with 10 users in each, after that try to authenticate
to Keystone 6000 times performing 50 authentications per second (running new authentication request every 20ms).
Each time we are performing authentication from one of the Rally pre-created user. This task passes only if max
average duration of authentication takes less than 5 seconds.

Note that this test is quite dangerous because it can DDoS Keystone. We are running more and more simultaneously
authentication requests and things may go wrong if something is not set properly (like on my DevStack deployment in
Small VM on my laptop).

Let’s run Rally task with an argument that prescribes Rally to stop load on SLA failure:

$ rally task start --abort-on-sla-failure auth.yaml

....
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| total | 0.108 | 8.58 | 65.97 | 19.782 | 26.125 | 100.0% | 2495 |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+

On the resulting table there are 2 interesting things:

1. Average duration was 8.58 sec which is more than 5 seconds

2. Rally performed only 2495 (instead of 6000) authentication requests

To understand better what has happened let’s generate HTML report:

$ rally task report --out auth_report.html

1.3. Rally step-by-step 23

Rally Documentation, Release 0.0.3

On the chart with durations we can observe that the duration of authentication request reaches 65 seconds at the end
of the load generation. Rally stopped load at the very last moment just before the mad things happened. The
reason why it runs so many attempts to authenticate is because of not enough good success criteria. We had to
run a lot of iterations to make average duration bigger than 5 seconds. Let’s chose better success criteria for this task
and run it one more time.

Authenticate.keystone:
-
runner:

type: "rps"
times: 6000
rps: 50

context:
users:

tenants: 5
users_per_tenant: 10

sla:
max_avg_duration: 5
max_seconds_per_iteration: 10
failure_rate:

max: 0

Now our task is going to be successful if the following three conditions hold:

1. maximum average duration of authentication should be less than 5 seconds

2. maximum duration of any authentication should be less than 10 seconds

3. no failed authentication should appear

24 Chapter 1. Contents

Rally Documentation, Release 0.0.3

Let’s run it!

$ rally task start --abort-on-sla-failure auth.yaml

...
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+
| total | 0.082 | 5.411 | 22.081 | 10.848 | 14.595 | 100.0% | 1410 |
+--------+-----------+-----------+-----------+---------------+---------------+---------+-------+

This time load stopped after 1410 iterations versus 2495 which is much better. The interesting thing on this chart is
that first occurence of “> 10 second” authentication happened on 950 iteration. The reasonable question: “Why Rally
run 500 more authentication requests then?”. This appears from the math: During the execution of bad authentication
(10 seconds) Rally performed about 50 request/sec * 10 sec = 500 new requests as a result we run 1400 iterations
instead of 950.

(based on: http://boris-42.me/rally-tricks-stop-load-before-your-openstack-goes-wrong/)

1.3.6 Step 5. Working with multiple OpenStack clouds

Rally is an awesome tool that allows you to work with multiple clouds and can itself deploy them. We already know
how to work with a single cloud. Let us now register 2 clouds in Rally: the one that we have access to and the other
that we know is registered with wrong credentials.

1.3. Rally step-by-step 25

http://boris-42.me/rally-tricks-stop-load-before-your-openstack-goes-wrong/

Rally Documentation, Release 0.0.3

$. openrc admin admin # openrc with correct credentials
$ rally deployment create --fromenv --name=cloud-1
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-18 00:11:14.757203 | cloud-1 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 4251b491-73b2-422a-aecb-695a94165b5e
~/.rally/openrc was updated
...

$. bad_openrc admin admin # openrc with wrong credentials
$ rally deployment create --fromenv --name=cloud-2
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-18 00:38:26.127171 | cloud-2 | deploy->finished | |
+--------------------------------------+----------------------------+------------+------------------+--------+
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

Let us now list the deployments we have created:

$ rally deployment list
+--------------------------------------+----------------------------+------------+------------------+--------+
| uuid | created_at | name | status | active |
+--------------------------------------+----------------------------+------------+------------------+--------+
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-05 00:11:14.757203 | cloud-1 | deploy->finished | |
| 658b9bae-1f9c-4036-9400-9e71e88864fc | 2015-01-05 00:40:58.451435 | cloud-2 | deploy->finished | * |
+--------------------------------------+----------------------------+------------+------------------+--------+

Note that the second is marked as “active” because this is the deployment we have created most recently. This means
that it will be automatically (unless its UUID or name is passed explicitly via the –deployment parameter) used by the
commands that need a deployment, like rally task start ... or rally deployment check:

$ rally deployment check
Authentication Issues: wrong keystone credentials specified in your endpoint properties. (HTTP 401).

$ rally deployment check --deployment=cloud-1
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

You can also switch the active deployment using the rally deployment use command:

26 Chapter 1. Contents

Rally Documentation, Release 0.0.3

$ rally deployment use cloud-1
Using deployment: 658b9bae-1f9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated
...

$ rally deployment check
keystone endpoints are valid and following services are available:
+----------+----------------+-----------+
| services | type | status |
+----------+----------------+-----------+
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav21	computev21	Available
s3	s3	Available
+----------+----------------+-----------+

Note the first two lines of the CLI output for the rally deployment use command. They tell you the UUID of the new
active deployment and also say that the ~/.rally/openrc file was updated – this is the place where the “active” UUID is
actually stored by Rally.

One last detail about managing different deployments in Rally is that the rally task list command outputs only those
tasks that were run against the currently active deployment, and you have to provide the –all-deployments parameter
to list all the tasks:

$ rally task list
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| c21a6ecb-57b2-43d6-bbbb-d7a827f1b420 | cloud-1 | 2015-01-05 01:00:42.099596 | 0:00:13.419226 | finished | False | |
| f6dad6ab-1a6d-450d-8981-f77062c6ef4f | cloud-1 | 2015-01-05 01:05:57.653253 | 0:00:14.160493 | finished | False | |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
$ rally task list --all-deployment
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
| uuid | deployment_name | created_at | duration | status | failed | tag |
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+
c21a6ecb-57b2-43d6-bbbb-d7a827f1b420	cloud-1	2015-01-05 01:00:42.099596	0:00:13.419226	finished	False	
f6dad6ab-1a6d-450d-8981-f77062c6ef4f	cloud-1	2015-01-05 01:05:57.653253	0:00:14.160493	finished	False	
6fd9a19f-5cf8-4f76-ab72-2e34bb1d4996	cloud-2	2015-01-05 01:14:51.428958	0:00:15.042265	finished	False	
+--------------------------------------+-----------------+----------------------------+----------------+----------+--------+-----+

1.3.7 Step 6. Discovering more benchmark scenarios in Rally

Scenarios in the Rally repository

Rally currently comes with a great collection of benchmark scenarios that use the API of different OpenStack projects
like Keystone, Nova, Cinder, Glance and so on. The good news is that you can combine multiple benchmark
scenarios in one task to benchmark your cloud in a comprehensive way.

First, let’s see what scenarios are available in Rally. One of the ways to discover these scenario is just to inspect their
source code.

1.3. Rally step-by-step 27

https://github.com/stackforge/rally/tree/master/rally/benchmark/scenarios

Rally Documentation, Release 0.0.3

Rally built-in search engine

A much more convenient way to learn about different benchmark scenarios in Rally, however, is to use a special search
engine embedded into its Command-Line Interface, which, for a given search query, prints documentation for the
corresponding benchmark scenario (and also supports other Rally entities like SLA).

To search for some specific benchmark scenario by its name or by its group, use the rally info find <query> command:

$ rally info find create_meter_and_get_stats
--
CeilometerStats.create_meter_and_get_stats (benchmark scenario)

--

Create a meter and fetch its statistics.

Meter is first created and then statistics is fetched for the same
using GET /v2/meters/(meter_name)/statistics.

Parameters:
- kwargs: contains optional arguments to create a meter

$ rally info find some_non_existing_benchmark
Failed to find any docs for query: ’some_non_existing_benchmark’

You can also get the list of different benchmark scenario groups available in Rally by typing rally info BenchmarkSce-
narios command:

$ rally info BenchmarkScenarios
--
Rally - Benchmark scenarios

--

Benchmark scenarios are what Rally actually uses to test the performance of an OpenStack deployment.
Each Benchmark scenario implements a sequence of atomic operations (server calls) to simulate
interesing user/operator/client activity in some typical use case, usually that of a specific OpenStack
project. Iterative execution of this sequence produces some kind of load on the target cloud.
Benchmark scenarios play the role of building blocks in benchmark task configuration files.

Scenarios in Rally are put together in groups. Each scenario group is concentrated on some specific
OpenStack functionality. For example, the "NovaServers" scenario group contains scenarios that employ
several basic operations available in Nova.

List of Benchmark scenario groups:
--
Name Description

--
Authenticate Benchmark scenarios for the authentication mechanism.
CeilometerAlarms Benchmark scenarios for Ceilometer Alarms API.
CeilometerMeters Benchmark scenarios for Ceilometer Meters API.
CeilometerQueries Benchmark scenarios for Ceilometer Queries API.
CeilometerResource Benchmark scenarios for Ceilometer Resource API.
CeilometerStats Benchmark scenarios for Ceilometer Stats API.
CinderVolumes Benchmark scenarios for Cinder Volumes.
DesignateBasic Basic benchmark scenarios for Designate.
Dummy Dummy benchmarks for testing Rally benchmark engine at scale.
GlanceImages Benchmark scenarios for Glance images.
HeatStacks Benchmark scenarios for Heat stacks.
KeystoneBasic Basic benchmark scenarios for Keystone.
NeutronNetworks Benchmark scenarios for Neutron.

28 Chapter 1. Contents

Rally Documentation, Release 0.0.3

NovaSecGroup Benchmark scenarios for Nova security groups.
NovaServers Benchmark scenarios for Nova servers.
Quotas Benchmark scenarios for quotas.
Requests Benchmark scenarios for HTTP requests.
SaharaClusters Benchmark scenarios for Sahara clusters.
SaharaJob Benchmark scenarios for Sahara jobs.
SaharaNodeGroupTemplates Benchmark scenarios for Sahara node group templates.
TempestScenario Benchmark scenarios that launch Tempest tests.
VMTasks Benchmark scenarios that are to be run inside VM instances.
ZaqarBasic Benchmark scenarios for Zaqar.

--

To get information about benchmark scenarios inside each scenario group, run:
$ rally info find <ScenarioGroupName>

1.3.8 Step 7. Deploying OpenStack from Rally

Along with supporting already existing OpenStack deployments, Rally itself can deploy OpenStack automatically
by using one of its deployment engines. Take a look at other deployment configuration file samples. For example,
devstack-in-existing-servers.json is a deployment configuration file that tells Rally to deploy OpenStack with Devstack
on the existing servers with given credentials:

{
"type": "DevstackEngine",
"provider": {

"type": "ExistingServers",
"credentials": [{"user": "root", "host": "10.2.0.8"}]

}
}

You can try to deploy OpenStack in your Virtual Machine using this script. Edit the configuration file with your IP
address/user name and run, as usual:

$ rally deployment create --file=samples/deployments/devstack-in-existing-servers.json.json --name=new-devstack
+---------------------------+----------------------------+--------------+------------------+
| uuid | created_at | name | status |
+---------------------------+----------------------------+--------------+------------------+
| <Deployment UUID> | 2015-01-10 22:00:28.270941 | new-devstack | deploy->finished |
+---------------------------+----------------------------+--------------+------------------+
Using deployment : <Deployment UUID>

1.3.9 Step 8. Rally task templates

Basic template syntax

A nice feature of the input task format used in Rally is that it supports the template syntax based on Jinja2. This turns
out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this task in
some way. For example, imagine your input task file (task.yaml) runs a set of Nova scenarios:

NovaServers.boot_and_delete_server:
-

args:
flavor:

1.3. Rally step-by-step 29

https://github.com/stackforge/rally/tree/master/samples/deployments
https://pypi.python.org/pypi/Jinja2

Rally Documentation, Release 0.0.3

name: "m1.tiny"
image:

name: "^cirros.*uec$"
runner:

type: "constant"
times: 2
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

NovaServers.resize_server:
-

args:
flavor:

name: "m1.tiny"
image:

name: "^cirros.*uec$"
to_flavor:

name: "m1.small"
runner:

type: "constant"
times: 3
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

In all the three scenarios above, the “^cirros.*uec$” image is passed to the scenario as an argument (so that these
scenarios use an appropriate image while booting servers). Let’s say you want to run the same set of scenarios with
the same runner/context/sla, but you want to try another image while booting server to compare the performance. The
most elegant solution is then to turn the image name into a template variable:

NovaServers.boot_and_delete_server:
-

args:
flavor:

name: "m1.tiny"
image:

name: {{image_name}}
runner:

type: "constant"
times: 2
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

NovaServers.resize_server:
-

args:
flavor:

name: "m1.tiny"

30 Chapter 1. Contents

Rally Documentation, Release 0.0.3

image:
name: {{image_name}}

to_flavor:
name: "m1.small"

runner:
type: "constant"
times: 3
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

and then pass the argument value for {{image_name}} when starting a task with this configuration file. Rally provides
you with different ways to do that:

1. Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

$ rally task start task.yaml --task-args ’{"image_name": "^cirros.*uec$"}’
$ rally task start task.yaml --task-args ’image_name: "^cirros.*uec$"’

2. Refer to a file that specifies the argument values (JSON/YAML):

$ rally task start task.yaml --task-args-file args.json
$ rally task start task.yaml --task-args-file args.yaml

where the files containing argument values should look as follows:

args.json:

{
"image_name": "^cirros.*uec$"

}

args.yaml:

image_name: "^cirros.*uec$"

Passed in either way, these parameter values will be substituted by Rally when starting a task:

$ rally task start task.yaml --task-args "image_name: "^cirros.*uec$""
--
Preparing input task

--

Input task is:

NovaServers.boot_and_delete_server:
-

args:
flavor:

name: "m1.tiny"
image:

name: ^cirros.*uec$
runner:

type: "constant"
times: 2
concurrency: 1

1.3. Rally step-by-step 31

Rally Documentation, Release 0.0.3

context:
users:
tenants: 1
users_per_tenant: 1

NovaServers.resize_server:
-

args:
flavor:

name: "m1.tiny"
image:

name: ^cirros.*uec$
to_flavor:

name: "m1.small"
runner:

type: "constant"
times: 3
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

--
Task cbf7eb97-0f1d-42d3-a1f1-3cc6f45ce23f: started

--

Benchmarking... This can take a while...

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set,
your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be
set using the {% set ... %} clause (task.yaml):

{% set image_name = image_name or "^cirros.*uec$" %}

NovaServers.boot_and_delete_server:
-

args:
flavor:

name: "m1.tiny"
image:

name: {{image_name}}
runner:

type: "constant"
times: 2
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

...

If you don’t pass the value for {{image_name}} while starting a task, the default one will be used:

32 Chapter 1. Contents

Rally Documentation, Release 0.0.3

$ rally task start task.yaml
--
Preparing input task

--

Input task is:

NovaServers.boot_and_delete_server:
-

args:
flavor:

name: "m1.tiny"
image:

name: ^cirros.*uec$
runner:

type: "constant"
times: 2
concurrency: 1

context:
users:
tenants: 1
users_per_tenant: 1

...

Advanced templates

Rally makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in functions.
This enables you to construct elegant task files capable of generating complex load on your cloud.

As an example, let us make up a task file that will create new users with increasing concurrency. The input task file
(task.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

KeystoneBasic.create_user:
{% for i in range(2, 11, 2) %}
-

args:
name_length: 10

runner:
type: "constant"
times: 10
concurrency: {{i}}

sla:
failure_rate:
max: 0

{% endfor %}

In this case, you don’t need to pass any arguments via –task-args/–task-args-file, but as soon as you start this task,
Rally will automatically unfold the for-loop for you:

$ rally task start task.yaml
--
Preparing input task

--

1.3. Rally step-by-step 33

Rally Documentation, Release 0.0.3

Input task is:

KeystoneBasic.create_user:

-
args:

name_length: 10
runner:

type: "constant"
times: 10
concurrency: 2

sla:
failure_rate:
max: 0

-
args:

name_length: 10
runner:

type: "constant"
times: 10
concurrency: 4

sla:
failure_rate:
max: 0

-
args:

name_length: 10
runner:

type: "constant"
times: 10
concurrency: 6

sla:
failure_rate:
max: 0

-
args:

name_length: 10
runner:

type: "constant"
times: 10
concurrency: 8

sla:
failure_rate:
max: 0

-
args:

name_length: 10
runner:

type: "constant"
times: 10
concurrency: 10

sla:
failure_rate:

34 Chapter 1. Contents

Rally Documentation, Release 0.0.3

max: 0

--
Task ea7e97e3-dd98-4a81-868a-5bb5b42b8610: started

--

Benchmarking... This can take a while...

As you can see, the Rally task template syntax is a simple but powerful mechanism that not only enables you to write
elegant task configurations, but also makes them more readable for other people. When used appropriately, it can
really improve the understanding of your benchmarking procedures in Rally when shared with others.

1.4 User stories

Many users of Rally were able to make interesting discoveries concerning their OpenStack clouds using our bench-
marking tool. Numerous user stories presented below show how Rally has made it possible to find performance bugs
and validate improvements for different OpenStack installations.

1.4.1 4x performance increase in Keysone inside Apache using the token creation
benchmark

(Contributed by Neependra Khare, Red Hat)

Below we describe how we were able to get and verify a 4x better performance of Keysone inside Apache. To do that,
we ran a Keystone token creation benchmark with Rally under different load (this benchmark scenario essentially just
authenticates users with keystone to get tokens).

Goal

• Get the data about performance of token creation under different load.

• Ensure that keystone with increased public_workers/admin_workers values and under Apache works better than
the default setup.

Summary

• As the concurrency increases, time to authenticate the user gets up.

• Keystone is CPU bound process and by default only one thread of keystone-all process get started. We can in-
crease the parallelism by :- 1. increasing public_workers/admin_workers values in keystone.conf file 2. running
keystone inside Apache

• We configured Keystone with 4 public_workers and ran Keystone inside Apache. In both cases we got upto 4x
better performance as compared to default keystone configuration.

Setup

Server : Dell PowerEdge R610

CPU make and model : Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

CPU count: 24

1.4. User stories 35

Rally Documentation, Release 0.0.3

RAM : 48 GB

Devstack - Commit#d65f7a2858fb047b20470e8fa62ddaede2787a85

Keystone - Commit#455d50e8ae360c2a7598a61d87d9d341e5d9d3ed

Keystone API - 2

To increase public_workers - Uncomment line with public_workers and set public_workers to 4. Then restart keystone
service.

To run keystone inside Apache - Added APACHE_ENABLED_SERVICES=key in localrc file while setting up Open-
Stack environment with devstack.

Results

1. Concurrency = 4

{’context’: {’users’: {’concurrent’: 30,
’tenants’: 12,
’users_per_tenant’: 512}},
’runner’: {’concurrency’: 4, ’times’: 10000, ’type’: ’constant’}}

ac-
tion

min
(sec)

avg
(sec)

max
(sec)

90 per-
centile

95 per-
centile

suc-
cess

count apache enabled
keystone

pub-
lic_workers

total 0.537 0.998 4.553 1.233 1.391 100.0% 10000 N 1
total 0.189 0.296 5.099 0.417 0.474 100.0% 10000 N 4
total 0.208 0.299 3.228 0.437 0.485 100.0% 10000 Y NA

2. Concurrency = 16

{’context’: {’users’: {’concurrent’: 30,
’tenants’: 12,
’users_per_tenant’: 512}},
’runner’: {’concurrency’: 16, ’times’: 10000, ’type’: ’constant’}}

ac-
tion

min
(sec)

avg
(sec)

max
(sec)

90 per-
centile

95 per-
centile

suc-
cess

count apache enabled
keystone

pub-
lic_workers

total 1.036 3.905 11.254 5.258 5.700 100.0% 10000 N 1
total 0.187 1.012 5.894 1.61 1.856 100.0% 10000 N 4
total 0.515 0.970 2.076 1.113 1.192 100.0% 10000 Y NA

3. Concurrency = 32

{’context’: {’users’: {’concurrent’: 30,
’tenants’: 12,
’users_per_tenant’: 512}},
’runner’: {’concurrency’: 32, ’times’: 10000, ’type’: ’constant’}}

ac-
tion

min
(sec)

avg
(sec)

max
(sec)

90 per-
centile

95 per-
centile

suc-
cess

count apache enabled
keystone

pub-
lic_workers

total 1.493 7.752 16.007 10.428 11.183 100.0% 10000 N 1
total 0.198 1.967 8.54 3.223 3.701 100.0% 10000 N 4
total 1.115 1.986 6.224 2.133 2.244 100.0% 10000 Y NA

1.4.2 Finding a Keystone bug while benchmarking 20 node HA cloud performance
at creating 400 VMs

(Contributed by Alexander Maretskiy, Mirantis)

36 Chapter 1. Contents

Rally Documentation, Release 0.0.3

Below we describe how we found a bug in keystone and achieved 2x average performance increase at booting Nova
servers after fixing that bug. Our initial goal was to benchmark the booting of a significant amount of servers on
a cluster (running on a custom build of Mirantis OpenStack v5.1) and to ensure that this operation has reasonable
performance and completes with no errors.

Goal

• Get data on how a cluster behaves when a huge amount of servers is started

• Get data on how good the neutron component is good in this case

Summary

• Creating 400 servers with configured networking

• Servers are being created simultaneously - 5 servers at the same time

Hardware

Having a real hardware lab with 20 nodes:

Vendor SUPERMICRO SUPERSERVER
CPU 12 cores, Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz
RAM 32GB (4 x Samsung DDRIII 8GB)
HDD 1TB

Cluster

This cluster was created via Fuel Dashboard interface.

Rally

Version

For this benchmark, we use custom rally with the following patch:

https://review.openstack.org/#/c/96300/

Deployment

Rally was deployed for cluster using ExistingCloud type of deployment.

Server flavor

$ nova flavor-show ram64
+----------------------------+--------------------------------------+
| Property | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	0
extra_specs	{}
id	2e46aba0-9e7f-4572-8b0a-b12cfe7e06a1
name	ram64
os-flavor-access:is_public	True

1.4. User stories 37

https://bugs.launchpad.net/keystone/+bug/1360446
https://software.mirantis.com/
https://review.openstack.org/#/c/96300/
https://github.com/stackforge/rally/blob/master/samples/deployments/existing.json

Rally Documentation, Release 0.0.3

ram	64
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+--------------------------------------+

Server image

$ nova image-show TestVM
+----------------------------+---+
| Property | Value |
+----------------------------+---+
OS-EXT-IMG-SIZE:size	13167616
created	2014-08-21T11:18:49Z
id	7a0d90cb-4372-40ef-b711-8f63b0ea9678
metadata murano_image_info	{"title": "Murano Demo", "type": "cirros.demo"}
minDisk	0
minRam	64
name	TestVM
progress	100
status	ACTIVE
updated	2014-08-21T11:18:50Z
+----------------------------+---+

Task configuration file (in JSON format):

{
"NovaServers.boot_server": [

{
"args": {

"flavor": {
"name": "ram64"

},
"image": {

"name": "TestVM"
}

},
"runner": {

"type": "constant",
"concurrency": 5,
"times": 400

},
"context": {

"neutron_network": {
"network_ip_version": 4

},
"users": {

"concurrent": 30,
"users_per_tenant": 5,
"tenants": 5

},
"quotas": {

"neutron": {
"subnet": -1,
"port": -1,
"network": -1,
"router": -1

}
}

38 Chapter 1. Contents

Rally Documentation, Release 0.0.3

}
}

]
}

The only difference between first and second run is that runner.times for first time was set to 500

Results

First time - a bug was found:

Starting from 142 server, we have error from novaclient: Error <class ‘novaclient.exceptions.Unauthorized’>: Unau-
thorized (HTTP 401).

That is how a bug in keystone was found.

action min (sec) avg (sec) max (sec) 90
percentile

95
percentile

success count

nova.boot_server
total

6.507
6.507

17.402
17.402

100.303
100.303

39.222
39.222

50.134
50.134

26.8%
26.8%

500
500

Second run, with bugfix:

After a patch was applied (using RPC instead of neutron client in metadata agent), we got 100% success and 2x
improved average perfomance:

action min (sec) avg (sec) max (sec) 90
percentile

95
percentile

success count

nova.boot_server
total

5.031
5.031

8.008
8.008

14.093
14.093

9.616
9.616

9.716
9.716

100.0%
100.0%

400
400

1.5 Rally Plugins

1.5.1 How plugins work

Rally provides an opportunity to create and use a custom benchmark scenario, runner or context as a plugin:

1.5. Rally Plugins 39

https://bugs.launchpad.net/keystone/+bug/1360446

Rally Documentation, Release 0.0.3

Plugins can be quickly written and used, with no need to contribute them to the actual Rally code. Just place a python
module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory (or it’s subdirectories), and it
will be autoloaded.

1.5.2 Example: Benchmark scenario as a plugin

Let’s create as a plugin a simple scenario which lists flavors.

Creation

Inherit a class for your plugin from the base Scenario class and implement a scenario method inside it as usual. In our
scenario, let us first list flavors as an ordinary user, and then repeat the same using admin clients:

from rally.benchmark.scenarios import base

class ScenarioPlugin(base.Scenario):
"""Sample plugin which lists flavors."""

@base.atomic_action_timer("list_flavors")
def _list_flavors(self):

"""Sample of usage clients - list flavors

You can use self.context, self.admin_clients and self.clients which are
initialized on scenario instanse creation"""
self.clients("nova").flavors.list()

@base.atomic_action_timer("list_flavors_as_admin")
def _list_flavors_as_admin(self):

"""The same with admin clients"""

40 Chapter 1. Contents

Rally Documentation, Release 0.0.3

self.admin_clients("nova").flavors.list()

@base.scenario()
def list_flavors(self):

"""List flavors."""
self._list_flavors()
self._list_flavors_as_admin()

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your plugin scenario in the benchmark task configuration files just in the same way as to any other
scenarios:

{
"ScenarioPlugin.list_flavors": [

{
"runner": {

"type": "serial",
"times": 5,

},
"context": {

"create_flavor": {
"ram": 512,

}
}

}
]

}

This configuration file uses the “create_flavor” context which we’ll create as a plugin below.

1.5.3 Example: Context as a plugin

Let’s create as a plugin a simple context which adds a flavor to the environment before the benchmark task starts and
deletes it after it finishes.

Creation

Inherit a class for your plugin from the base Context class. Then, implement the Context API: the setup() method that
creates a flavor and the cleanup() method that deletes it.

from rally.benchmark.context import base
from rally.common import log as logging
from rally import consts
from rally import osclients

LOG = logging.getLogger(__name__)

1.5. Rally Plugins 41

Rally Documentation, Release 0.0.3

@base.context(name="create_flavor", order=1000)
class CreateFlavorContext(base.Context):

"""This sample create flavor with specified options before task starts and
delete it after task completion.

To create your own context plugin, inherit it from
rally.benchmark.context.base.Context
"""

CONFIG_SCHEMA = {
"type": "object",
"$schema": consts.JSON_SCHEMA,
"additionalProperties": False,
"properties": {

"flavor_name": {
"type": "string",

},
"ram": {

"type": "integer",
"minimum": 1

},
"vcpus": {

"type": "integer",
"minimum": 1

},
"disk": {

"type": "integer",
"minimum": 1

}
}

}

def setup(self):
"""This method is called before the task start"""
try:

use rally.osclients to get nessesary client instance
nova = osclients.Clients(self.context["admin"]["endpoint"]).nova()
and than do what you need with this client
self.context["flavor"] = nova.flavors.create(

context settings are stored in self.config
name=self.config.get("flavor_name", "rally_test_flavor"),
ram=self.config.get("ram", 1),
vcpus=self.config.get("vcpus", 1),
disk=self.config.get("disk", 1)).to_dict()

LOG.debug("Flavor with id ’%s’" % self.context["flavor"]["id"])
except Exception as e:

msg = "Can’t create flavor: %s" % e.message
if logging.is_debug():

LOG.exception(msg)
else:

LOG.warning(msg)

def cleanup(self):
"""This method is called after the task finish"""
try:

nova = osclients.Clients(self.context["admin"]["endpoint"]).nova()
nova.flavors.delete(self.context["flavor"]["id"])

42 Chapter 1. Contents

Rally Documentation, Release 0.0.3

LOG.debug("Flavor ’%s’ deleted" % self.context["flavor"]["id"])
except Exception as e:

msg = "Can’t delete flavor: %s" % e.message
if logging.is_debug():

LOG.exception(msg)
else:

LOG.warning(msg)

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your plugin context in the benchmark task configuration files just in the same way as to any other
contexts:

{
"Dummy.dummy": [

{
"args": {

"sleep": 0.01
},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 1

},
"context": {

"users": {
"tenants": 1,
"users_per_tenant": 1

},
"create_flavor": {

"ram": 1024
}

}
}

]
}

1.5.4 Example: SLA as a plugin

Let’s create as a plugin an SLA (success criterion) which checks whether the range of the observed performance
measurements does not exceed the allowed maximum value.

Creation

Inherit a class for your plugin from the base SLA class and implement its API (the check() method):

1.5. Rally Plugins 43

Rally Documentation, Release 0.0.3

from rally.benchmark.sla import base

class MaxDurationRange(base.SLA):
"""Maximum allowed duration range in seconds."""
OPTION_NAME = "max_duration_range"
CONFIG_SCHEMA = {"type": "number", "minimum": 0.0,

"exclusiveMinimum": True}

@staticmethod
def check(criterion_value, result):

durations = [r["duration"] for r in result if not r.get("error")]
durations_range = max(durations) - min(durations)
success = durations_range <= criterion_value
msg = (_("Maximum duration range per iteration %ss, actual %ss")

% (criterion_value, durations_range))
return base.SLAResult(success, msg)

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your SLA in the benchmark task configuration files just in the same way as to any other SLA:

{
"Dummy.dummy": [

{
"args": {

"sleep": 0.01
},
"runner": {

"type": "constant",
"times": 5,
"concurrency": 1

},
"context": {

"users": {
"tenants": 1,
"users_per_tenant": 1

}
},
"sla": {

"max_duration_range": 2.5
}

}
]

}

44 Chapter 1. Contents

Rally Documentation, Release 0.0.3

1.5.5 Example: Scenario runner as a plugin

Let’s create as a plugin a scenario runner which runs a given benchmark scenario for a random number of times
(chosen at random from a given range).

Creation

Inherit a class for your plugin from the base ScenarioRunner class and implement its API (the _run_scenario()
method):

import random

from rally.benchmark.runners import base
from rally import consts

class RandomTimesScenarioRunner(base.ScenarioRunner):
"""Sample of scenario runner plugin.

Run scenario random number of times, which is choosen between min_times and
max_times.
"""

__execution_type__ = "random_times"

CONFIG_SCHEMA = {
"type": "object",
"$schema": consts.JSON_SCHEMA,
"properties": {

"type": {
"type": "string"

},
"min_times": {

"type": "integer",
"minimum": 1

},
"max_times": {

"type": "integer",
"minimum": 1

}
},
"additionalProperties": True

}

def _run_scenario(self, cls, method_name, context, args):
runners settings are stored in self.config
min_times = self.config.get(’min_times’, 1)
max_times = self.config.get(’max_times’, 1)

for i in range(random.randrange(min_times, max_times)):
run_args = (i, cls, method_name,

base._get_scenario_context(context), args)
result = base._run_scenario_once(run_args)
use self.send_result for result of each iteration
self._send_result(result)

1.5. Rally Plugins 45

Rally Documentation, Release 0.0.3

Placement

Put the python module with your plugin class into the /opt/rally/plugins or ~/.rally/plugins directory or it’s subdirec-
tories and it will be autoloaded. You can also use a script unpack_plugins_samples.sh from samples/plugins which
will automatically create the ~/.rally/plugins directory.

Usage

You can refer to your scenario runner in the benchmark task configuration files just in the same way as to any other run-
ners. Don’t forget to put you runner-specific parameters to the configuration as well (“min_times” and “max_times”
in our example):

{
"Dummy.dummy": [

{
"runner": {

"type": "random_times",
"min_times": 10,
"max_times": 20,

},
"context": {

"users": {
"tenants": 1,
"users_per_tenant": 1

}
}

}
]

}

Different plugin samples are available here.

1.6 Contribute to Rally

1.6.1 Where to begin

Please take a look our Roadmap to get information about our current work directions.

In case you have questions or want to share your ideas, be sure to contact us at the #openstack-rally IRC
channel on irc.freenode.net.

If you are going to contribute to Rally, you will probably need to grasp a better understanding of several main design
concepts used throughout our project (such as benchmark scenarios, contexts etc.). To do so, please read this article.

1.6.2 How to contribute

1. You need a Launchpad account and need to be joined to the Openstack team. You can also join the Rally team
if you want to. Make sure Launchpad has your SSH key, Gerrit (the code review system) uses this.

2. Sign the CLA as outlined in the account setup section of the developer guide.

3. Tell git your details:

46 Chapter 1. Contents

https://github.com/stackforge/rally/tree/master/samples/plugins
https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0
https://launchpad.net/
https://launchpad.net/openstack
https://launchpad.net/rally
http://docs.openstack.org/infra/manual/developers.html#development-workflow

Rally Documentation, Release 0.0.3

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

4. Install git-review. This tool takes a lot of the pain out of remembering commands to push code up to Gerrit for
review and to pull it back down to edit it. It is installed using:

pip install git-review

Several Linux distributions (notably Fedora 16 and Ubuntu 12.04) are also starting to include git-review in their
repositories so it can also be installed using the standard package manager.

5. Grab the Rally repository:

git clone git@github.com:stackforge/rally.git

6. Checkout a new branch to hack on:

git checkout -b TOPIC-BRANCH

7. Start coding

8. Run the test suite locally to make sure nothing broke, e.g. (this will run py26/py27/pep8 tests):

tox

(NOTE: you should have installed tox<=1.6.1)

If you extend Rally with new functionality, make sure you have also provided unit and/or functional tests for it.

9. Commit your work using:

git commit -a

Make sure you have supplied your commit with a neat commit message, containing a link to the corresponding
blueprint / bug, if appropriate.

10. Push the commit up for code review using:

git review -R

That is the awesome tool we installed earlier that does a lot of hard work for you.

11. Watch your email or review site, it will automatically send your code for a battery of tests on our Jenkins setup
and the core team for the project will review your code. If there are any changes that should be made they will
let you know.

12. When all is good the review site will automatically merge your code.

(This tutorial is based on: http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html)

1.6.3 Testing

Please, don’t hesitate to write tests ;)

Unit tests

Files: /tests/unit/*

The goal of unit tests is to ensure that internal parts of the code work properly. All internal methods should be fully
covered by unit tests with a reasonable mocks usage.

1.6. Contribute to Rally 47

http://review.openstack.org/
http://jenkins.openstack.org/
http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html

Rally Documentation, Release 0.0.3

About Rally unit tests:

• All unit tests are located inside /tests/unit/*

• Tests are written on top of: testtools, fixtures and mock libs

• Tox is used to run unit tests

To run unit tests locally:

$ pip install tox
$ tox

To run py26, py27 or pep8 only:

$ tox -e <name>

#NOTE: <name> is one of py26, py27 or pep8

To get test coverage:

$ tox -e cover

#NOTE: Results will be in /cover/index.html

To generate docs:

$ tox -e docs

#NOTE: Documentation will be in doc/source/_build/html/index.html

Functional tests

Files: /tests/functional/*

The goal of functional tests is to check that everything works well together. Fuctional tests use Rally API only and
check responses without touching internal parts.

To run functional tests locally:

$ source openrc
$ rally deployment create --fromenv --name testing
$ tox -e cli

#NOTE: openrc file with OpenStack admin credentials

Output of every Rally execution will be collected under some reports root in directiry struc-
ture like: reports_root/ClassName/MethodName_suffix.extension This functionality implemented in
tests.functional.utils.Rally.__call__ method. Use ‘gen_report_path’ method of ‘Rally’ class to get automaticaly
generated file path and name if you need. You can use it to publish html reports, generated during tests. Reports root
can be passed throw environment variable ‘REPORTS_ROOT’. Default is ‘rally-cli-output-files’.

Rally CI scripts

Files: /tests/ci/*

This directory contains scripts and files related to the Rally CI system.

48 Chapter 1. Contents

http://en.wikipedia.org/wiki/Unit_testing
https://tox.readthedocs.org/en/latest/
https://en.wikipedia.org/wiki/Functional_testing

Rally Documentation, Release 0.0.3

Rally Style Commandments

Files: /tests/hacking/

This module contains Rally specific hacking rules for checking commandments.

For more information about Style Commandments, read the OpenStack Style Commandments manual.

1.7 Rally OS Gates

1.7.1 Gate jobs

The Openstack CI system uses the so-called “Gate jobs” to control merges of patched submitted for review on Gerrit.
These Gate jobs usually just launch a set of tests – unit, functional, integration, style – that check that the proposed
patch does not break the software and can be merged into the target branch, thus providing additional guarantees for
the stability of the software.

1.7.2 Create a custom Rally Gate job

You can create a Rally Gate job for your project to run Rally benchmarks against the patchsets proposed to be merged
into your project.

To create a rally-gate job, you should create a rally-jobs/ directory at the root of your project.

As a rule, this directory contains only {projectname}.yaml, but more scenarios and jobs can be added as well. This
yaml file is in fact an input Rally task file specifying benchmark scenarios that should be run in your gate job.

To make {projectname}.yaml run in gates, you need to add “rally-jobs” to the “jobs” section of projects.yaml in
openstack-infra/project-config.

1.7.3 Example: Rally Gate job for Glance

Let’s take a look at an example for the Glance project:

Edit jenkins/jobs/projects.yaml:

- project:
name: glance
node: ‘bare-precise || bare-trusty’
tarball-site: tarballs.openstack.org
doc-publisher-site: docs.openstack.org

jobs:
- python-jobs
- python-icehouse-bitrot-jobs
- python-juno-bitrot-jobs
- openstack-publish-jobs
- translation-jobs
- rally-jobs

Also add gate-rally-dsvm-{projectname} to zuul/layout.yaml:

- name: openstack/glance
template:

- name: merge-check

1.7. Rally OS Gates 49

http://docs.openstack.org/developer/hacking/
https://wiki.openstack.org/wiki/Glance

Rally Documentation, Release 0.0.3

- name: python26-jobs
- name: python-jobs
- name: openstack-server-publish-jobs
- name: openstack-server-release-jobs
- name: periodic-icehouse
- name: periodic-juno
- name: check-requirements
- name: integrated-gate
- name: translation-jobs
- name: large-ops
- name: experimental-tripleo-jobs

check:
- check-devstack-dsvm-cells
- gate-rally-dsvm-glance

gate:
- gate-devstack-dsvm-cells

experimental:
- gate-grenade-dsvm-forward

To add one more scenario and job, you need to add {scenarioname}.yaml file here, and gate-rally-dsvm-
{scenarioname} to projects.yaml.

For example, you can add myscenario.yaml to rally-jobs directory in your project and then edit jenk-
ins/jobs/projects.yaml in this way:

- project:
name: glance
github-org: openstack
node: bare-precise
tarball-site: tarballs.openstack.org
doc-publisher-site: docs.openstack.org

jobs:
- python-jobs
- python-havana-bitrot-jobs
- openstack-publish-jobs
- translation-jobs
- rally-jobs
- ‘gate-rally-dsvm-{name}’:

name: myscenario

Finally, add gate-rally-dsvm-myscenario to zuul/layout.yaml:

- name: openstack/glance
template:

- name: python-jobs
- name: openstack-server-publish-jobs
- name: periodic-havana
- name: check-requirements
- name: integrated-gate

check:
- check-devstack-dsvm-cells
- check-tempest-dsvm-postgres-full
- gate-tempest-dsvm-large-ops
- gate-tempest-dsvm-neutron-large-ops
- gate-rally-dsvm-myscenario

50 Chapter 1. Contents

Rally Documentation, Release 0.0.3

It is also possible to arrange your input task files as templates based on jinja2. Say, you want to set the image names
used throughout the myscenario.yaml task file as a variable parameter. Then, replace concrete image names in this file
with a variable:
...

NovaServers.boot_and_delete_server:
-
args:

image:
name: {{image_name}}

...

NovaServers.boot_and_list_server:
-
args:

image:
name: {{image_name}}

...

and create a file named myscenario_args.yaml that will define the parameter values:

image_name: "^cirros.*uec$"

this file will be automatically used by Rally to substitute the variables in myscenario.yaml.

1.7.4 Plugins & Extras in Rally Gate jobs

Along with scenario configs in yaml, the rally-jobs directory can also contain two subdirectories:

• plugins: Plugins needed for your gate job;

• extra: auxiliary files like bash scripts or images.

Both subdirectories will be copied to ~/.rally/ before the job gets started.

1.8 Request New Features

To request a new feature, you should create a document similar to other feature requests and then contribute it to the
doc/feature_request directory of the Rally repository (see the How-to-contribute tutorial).

If you don’t have time to contribute your feature request via gerrit, please contact Boris Pavlovic (boris@pavlovic.me)

Active feature requests:

1.8.1 Support benchmarking clouds that are using LDAP

Use Case

A lot of production clouds are using LDAP with read only access. It means that load can be generated only by existing
in system users and there is no admin access.

1.8. Request New Features 51

mailto:boris@pavlovic.me

Rally Documentation, Release 0.0.3

Problem Description

Rally is using admin access to create temporary users that will be used to produce load.

Possible Solution

• Drop admin requirements

• Add way to pass already existing users

1.8.2 Ability to compare results between task

Use case

During the work on performance it’s essential to be able to compare results of similar task before and after change in
system.

Problem description

There is no command to compare two or more tasks and get tables and graphs.

Possible solution

• Add command that accepts 2 tasks UUID and prints graphs that compares result

1.8.3 Distributed load generation

Use Case

Some OpenStack projects (Marconi, MagnetoDB) require a real huge load, like 10-100k request per second for bench-
marking.

To generate such huge load Rally have to create load from different servers.

Problem Description

• Rally can’t generate load from different servers

• Result processing can’t handle big amount of data

• There is no support for chunking results

1.8.4 Historical performance data

Use case

OpenStack is really rapidly developed. Hundreds patches are merged daily and it’s really hard to track how perfor-
mance is changed during time. It will be nice to have a way to track performance of major functionality of OpenStack
running periodically rally task and building graphs that represent how performance of specific method is changed
during the time.

52 Chapter 1. Contents

Rally Documentation, Release 0.0.3

Problem description

There is no way to bind tasks

Possible solution

• Add grouping for tasks

• Add command that creates historical graphs

1.8.5 Using multi scenarios to generate load

Use Case

Rally should be able to generate real life load. Simultaneously create load on different components of OpenStack, e.g.
simultaneously booting VM, uploading image and listing users.

Problem Description

At the moment Rally is able to run only 1 scenario per benchmark. Scenario are quite specific (e.g. boot and delete
VM for example) and can’t actually generate real life load.

Writing a lot of specific benchmark scenarios that will produce more real life load will produce mess and a lot of
duplication of code.

Possible solution

• Extend Rally task benchmark configuration in such way to support passing multiple benchmark scenarios in
singe benchmark context

• Extend Rally task output format to support results of multiple scenarios in single benchmark separately.

• Extend rally task plot2html and rally task detailed to show results separately for every scenario.

1.8.6 Add support of persistence benchmark environment

Use Case

To benchmark many of operations like show, list, detailed you need to have already these resource in cloud. So it will
be nice to be able to create benchmark environment once before benchmarking. The run some amount of benchmarks
that are using it and at the end just delete all created resources by benchmark environment.

Problem Description

Fortunately Rally has already a mechanism for creating benchmark environment, that is used to create load. Unfortu-
nately it’s atomic operation: (create environment, make load, delete environment). This should be split to 3 separated
steps.

1.8. Request New Features 53

Rally Documentation, Release 0.0.3

Possible solution

• Add new CLI operations to work with benchmark environment: (show, create, delete, list)

• Allow task to start against benchmark environment (instead of deployment)

1.8.7 Production read cleanups

Use Case

Rally should delete in any case all resources that it created during benchmark.

Problem Description

• (implemented) Deletion rate limit

You can kill cloud by deleting too many objects simultaneously, so deletion rate limit is required

• (implemented) Retry on failures

There should be few attempts to delete resource in case of failures

• (implemented) Log resources that failed to be deleted

We should log warnings about all non deleted resources. This information should include UUID of resource,
it’s type and project.

• (implemented) Pluggable

It should be simple to add new cleanups adding just plugins somewhere.

• Disaster recovery

Rally should use special name patterns, to be able to delete resources in such case if something went wrong with
server that is running rally. And you have just new instance (without old rally db) of rally on new server.

1.9 Project Info

1.9.1 Useful links

• Source code

• Rally road map

• Project space

• Bugs

• Patches on review

• Meeting logs (server: irc.freenode.net, channel: #openstack-meeting)

• IRC logs (server: irc.freenode.net, channel: #openstack-rally)

54 Chapter 1. Contents

https://github.com/stackforge/rally
https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0
http://launchpad.net/rally
https://bugs.launchpad.net/rally
https://review.openstack.org/#/q/status:open+rally,n,z
http://eavesdrop.openstack.org/meetings/rally/2015/
http://irclog.perlgeek.de/openstack-rally

Rally Documentation, Release 0.0.3

1.9.2 Where can I discuss and propose changes?

• Our IRC channel: #openstack-rally on irc.freenode.net;

• Weekly Rally team meeting (in IRC): #openstack-meeting on irc.freenode.net, held on Tuesdays at 17:00
UTC;

• Openstack mailing list: openstack-dev@lists.openstack.org (see subscription and usage instructions);

• Rally team on Launchpad: Answers/Bugs/Blueprints.

1.10 Release Notes

1.10.1 All release notes

Rally v0.0.1

Information

Commits 1039
Bug fixes 0
Dev cycle 547 days
Release date 26/Jan/2015

Details

Rally is awesome tool for testing verifying and benchmarking OpenStack clouds.

A lot of people started using Rally in their CI/CD so Rally team should provide more stable product with clear strategy
of deprecation and upgrades.

Rally v0.0.2

Information

Commits 100
Bug fixes 18
Dev cycle 45 days
Release date 12/Mar/2015

Details

This release contains new features, new benchmark plugins, bug fixes, various code and API improvements.

New Features

• rally task start –abort-on-sla-failure

Stopping load before things go wrong. Load generation will be interrupted if SLA criteria stop
passing.

1.10. Release Notes 55

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://launchpad.net/rally

Rally Documentation, Release 0.0.3

• Rally verify command supports multiple Tempest sources now.

• python34 support

• postgres DB backend support

API changes

• [new] rally [deployment | verify | task] use subcommand

It should be used instead of root command rally use

• [new] Rally as a Lib API

To avoid code duplication between Rally as CLI tool and Rally as a Service we decide to make Rally
as a Lib as a common part between these 2 modes.

Rally as a Service will be a daemon that just maps HTTP request to Rally as a Lib API.

• [deprecated] rally use CLI command

• [deprecated] Old Rally as a Lib API

Old Rally API was quite mixed up so we decide to deprecate it

Plugins

• Benchmark Scenario Runners:

[improved] Improved algorithm of generation load in constant runner

Before we used processes to generate load, now it creates pool of processes (amount of
processes is equal to CPU count) after that in each process use threads to generate load. So
now you can easily generate load of 1k concurrent scenarios.

[improved] Unify code of constant and rps runners

[interface] Added abort() to runner’s plugin interface

New method abort() is used to immediately interrupt execution.

• Benchmark Scenarios:

[new] DesignateBasic.create_and_delete_server

[new] DesignateBasic.create_and_list_servers

[new] DesignateBasic.list_servers

[new] MistralWorkbooks.list_workbooks

[new] MistralWorkbooks.create_workbook

[new] Quotas.neutron_update

[new] HeatStacks.create_update_delete_stack

[new] HeatStacks.list_stacks_and_resources

[new] HeatStacks.create_suspend_resume_delete_stac

[new] HeatStacks.create_check_delete_stack

[new] NeutronNetworks.create_and_delete_routers

[new] NovaKeypair.create_and_delete_keypair

[new] NovaKeypair.create_and_list_keypairs

56 Chapter 1. Contents

Rally Documentation, Release 0.0.3

[new] NovaKeypair.boot_and_delete_server_with_keypair

[new] NovaServers.boot_server_from_volume_and_live_migrate

[new] NovaServers.boot_server_attach_created_volume_and_live_migrate

[new] CinderVolumes.create_and_upload_volume_to_image

[fix] CinderVolumes.create_and_attach_volume

Pass optional **kwargs only to create server command

[fix] GlanceImages.create_image_and_boot_instances

Pass optional **kwargs only to create server command

[fix] TempestScenario.* removed stress cleanup.

Major issue is that tempest stress cleanup cleans whole OpenStack. This is very dangerous,
so it’s better to remove it and leave some extra resources.

[improved] NovaSecGroup.boot_and_delete_server_with_secgroups

Add optional **kwargs that are passed to boot server comment

• Benchmark Context:

[new] stacks

Generates passed amount of heat stacks for all tenants.

[new] custom_image

Prepares images for benchmarks in VMs.

To Support generating workloads in VMs by existing tools like: IPerf, Blogbench, HPCC
and others we have to have prepared images, with already installed and configured tools.

Rally team decide to generate such images on fly from passed to avoid requirements of
having big repository with a lot of images.

This context is abstract context that allows to automate next steps:

1. runs VM with passed image (with floating ip and other stuff)

2. execute abstract method that has access to VM

3. snapshot this image

In future we are going to use this as a base for making context that prepares images.

[improved] allow_ssh

Automatically disable it if security group are disabled in neutron.

[improved] keypair

Key pairs are stored in “users” space it means that accessing keypair from scenario is sim-
pler now:

self.context[”user”][”keypair”][”private”]

[fix] users

Pass proper EndpointType for newly created users

[fix] sahara_edp

The Job Binaries data should be treated as a binary content

1.10. Release Notes 57

Rally Documentation, Release 0.0.3

• Benchmark SLA:

[interface] SLA calculations is done in additive way now

Resolves scale issues, because now we don’t need to have whole array of iterations in
memory to process SLA.

This is required to implement –abort-on-sla-failure feature

[all] SLA plugins were rewritten to implement new interface

Bug fixes 18 bugs were fixed, the most critical are:

• Fix rally task detailed –iterations-data

It didn’t work in case of missing atomic actions. Such situation can occur if scenario method raises exceptions

• Add user-friendly message if the task cannot be deleted

In case of trying to delete task that is not in “finished” status users get traces instead of user-friendly message
try to run it with –force key.

• Network context cleanups networks properly now

Documentation

• Image sizes are fixed

• New tutorial in “Step by Step” relate to –abort-on-sla-failure

• Various fixes

Rally v0.0.3

Information

Commits 53
Bug fixes 14
Dev cycle 33 days
Release date 14/Apr/2015

Details

This release contains new features, new benchmark plugins, bug fixes, various code and API improvements.

New Features & API changes

• Add the ability to specify versions for clients in benchmark scenarios

You can call self.clients(“glance”, “2”) and get any client for specific version.

• Add API for tempest uninstall

$ rally-manage tempest uninstall # removes fully tempest for active deployment

• Add a –uuids-only option to rally task list

$ rally task list –uuids-only # returns list with only task uuids

58 Chapter 1. Contents

Rally Documentation, Release 0.0.3

• Adds endpoint to –fromenv deployment creation

$ rally deployment create –fromenv # recognizes standard OS_ENDPOINT environment variable

• Configure SSL per deployment

Now SSL information is deployment specific not Rally specific and rally.conf option is deprecated

Like in this sample https://github.com/stackforge/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-
L12

Specs

• [spec] Proposal for new task input file format

This spec describes new task input format that will allow us to generate multi scenario load which is crucial for
HA and more real life testing:

https://github.com/stackforge/rally/blob/master/doc/specs/in-progress/new_rally_input_task_format.rst

Plugins

• Benchmark Scenario Runners:

– Add a maximum concurrency option to rps runner

To avoid running to heavy load you can set ‘concurrency’ to configuration and in case if cloud is not able
to process all requests it won’t start more parallel requests then ‘concurrency’ value.

• Benchmark Scenarios:

[new] CeilometerAlarms.create_alarm_and_get_history

[new] KeystoneBasic.get_entities

[new] EC2Servers.boot_server

[new] KeystoneBasic.create_and_delete_service

[new] MuranoEnvironments.list_environments

[new] MuranoEnvironments.create_and_delete_environment

[new] NovaServers.suspend_and_resume_server

[new] NovaServers.pause_and_unpause_server

[new] NovaServers.boot_and_rebuild_server

[new] KeystoneBasic.create_and_list_services

[new] HeatStacks.list_stacks_and_events

[improved] VMTask.boot_runcommand_delete

restore ability to use fixed IP and floating IP to connect to VM via ssh

[fix] NovaServers.boot_server_attach_created_volume_and_live_migrate

Kwargs in nova scenario were wrongly passed

• Benchmark SLA:

– [new] aborted_on_sla

This is internal SLA criteria, that is added if task was aborted

– [new] something_went_wrong

1.10. Release Notes 59

https://github.com/stackforge/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-L12
https://github.com/stackforge/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-L12
https://github.com/stackforge/rally/blob/master/doc/specs/in-progress/new_rally_input_task_format.rst

Rally Documentation, Release 0.0.3

This is internal SLA criteria, that is added if something went wrong, context failed to create or runner
raised some exceptions

Bug fixes 14 bugs were fixed, the most critical are:

• Set default task uuid to running task. Before it was set only after task was fully finished.

• The “rally task results” command showed a disorienting “task not found” message for a task that is currently
running.

• Rally didn’t know how to reconnect to OpenStack in case if token expired.

Documentation

• New tutorial task templates

https://rally.readthedocs.org/en/latest/tutorial/step_8_task_templates.html

• Various fixes

1.10.2 Rally v0.0.3

Information

Commits 53
Bug fixes 14
Dev cycle 33 days
Release date 14/Apr/2015

Details

This release contains new features, new benchmark plugins, bug fixes, various code and API improvements.

New Features & API changes

• Add the ability to specify versions for clients in benchmark scenarios

You can call self.clients(“glance”, “2”) and get any client for specific version.

• Add API for tempest uninstall

$ rally-manage tempest uninstall # removes fully tempest for active deployment

• Add a –uuids-only option to rally task list

$ rally task list –uuids-only # returns list with only task uuids

• Adds endpoint to –fromenv deployment creation

$ rally deployment create –fromenv # recognizes standard OS_ENDPOINT environment variable

• Configure SSL per deployment

Now SSL information is deployment specific not Rally specific and rally.conf option is deprecated

Like in this sample https://github.com/stackforge/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-
L12

60 Chapter 1. Contents

https://rally.readthedocs.org/en/latest/tutorial/step_8_task_templates.html
https://github.com/stackforge/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-L12
https://github.com/stackforge/rally/blob/14d0b5ba0c75ececfdb6a6c121d9cf2810571f77/samples/deployments/existing.json#L11-L12

Rally Documentation, Release 0.0.3

Specs

• [spec] Proposal for new task input file format

This spec describes new task input format that will allow us to generate multi scenario load which is crucial for
HA and more real life testing:

https://github.com/stackforge/rally/blob/master/doc/specs/in-progress/new_rally_input_task_format.rst

Plugins

• Benchmark Scenario Runners:

– Add a maximum concurrency option to rps runner

To avoid running to heavy load you can set ‘concurrency’ to configuration and in case if cloud is not able
to process all requests it won’t start more parallel requests then ‘concurrency’ value.

• Benchmark Scenarios:

[new] CeilometerAlarms.create_alarm_and_get_history

[new] KeystoneBasic.get_entities

[new] EC2Servers.boot_server

[new] KeystoneBasic.create_and_delete_service

[new] MuranoEnvironments.list_environments

[new] MuranoEnvironments.create_and_delete_environment

[new] NovaServers.suspend_and_resume_server

[new] NovaServers.pause_and_unpause_server

[new] NovaServers.boot_and_rebuild_server

[new] KeystoneBasic.create_and_list_services

[new] HeatStacks.list_stacks_and_events

[improved] VMTask.boot_runcommand_delete

restore ability to use fixed IP and floating IP to connect to VM via ssh

[fix] NovaServers.boot_server_attach_created_volume_and_live_migrate

Kwargs in nova scenario were wrongly passed

• Benchmark SLA:

– [new] aborted_on_sla

This is internal SLA criteria, that is added if task was aborted

– [new] something_went_wrong

This is internal SLA criteria, that is added if something went wrong, context failed to create or runner
raised some exceptions

1.10. Release Notes 61

https://github.com/stackforge/rally/blob/master/doc/specs/in-progress/new_rally_input_task_format.rst

Rally Documentation, Release 0.0.3

Bug fixes

14 bugs were fixed, the most critical are:

• Set default task uuid to running task. Before it was set only after task was fully finished.

• The “rally task results” command showed a disorienting “task not found” message for a task that is currently
running.

• Rally didn’t know how to reconnect to OpenStack in case if token expired.

Documentation

• New tutorial task templates

https://rally.readthedocs.org/en/latest/tutorial/step_8_task_templates.html

• Various fixes

62 Chapter 1. Contents

https://rally.readthedocs.org/en/latest/tutorial/step_8_task_templates.html

	Contents
	Overview
	Installation
	Rally step-by-step
	User stories
	Rally Plugins
	Contribute to Rally
	Rally OS Gates
	Request New Features
	Project Info
	Release Notes

